
www.manaraa.com

Towards Polymorphic Systems Engineering

by John TJ Mathieson

B.S. in Aerospace Engineering, May 2004, University of Notre Dame
M.S. in Astronautical Engineering, May 2008, University of Southern California

A Dissertation submitted to

The Faculty of
The School of Engineering and Applied Science

of The George Washington University
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

January 8, 2021

Dissertation directed by

Thomas Mazzuchi
Professor of Engineering Management and Systems Engineering

Shahram Sarkani

Professor of Engineering Management and Systems Engineering & of Decision Sciences

www.manaraa.com

28257912

28257912

2020

www.manaraa.com

ii

The School of Engineering and Applied Science of The George Washington University

certifies that John TJ Mathieson has passed the Final Examination for the degree of Doctor

of Philosophy as of 30 October 2020. This is the final and approved form of the dissertation.

Towards Polymorphic Systems Engineering

John TJ Mathieson

Dissertation Research Committee:

Thomas A. Mazzuchi, Professor of Engineering Management and Systems
Engineering, Dissertation Co-Director

Shahram Sarkani, Professor of Engineering Management and Systems
Engineering & of Decision Sciences, Dissertation Co-Director

Amir Etemadi, Associate Professor of Electrical Engineering, Committee Member

Thomas Holzer, Professional Lecturer of Engineering Management and Systems
Engineering, Committee Member

Joseph P. Blackford, Professional Lecturer of Engineering Management and
Systems Engineering, Committee Member

www.manaraa.com

iii

© Copyright 2020 by John TJ Mathieson
All rights reserved

www.manaraa.com

iv

Dedication

First and foremost, I would like to dedicate this work and the countless hours spent

toiling away on it to my wonderful wife, best friend, teammate, critic, and advocate,

Michelle. Without your willingness to embark on my wild endeavors with me, none of this

would have ever been possible. Your measured balance of patience with purpose is an

attribute to which we should all aspire and one that kept me on track throughout this

journey. Second, to my boys, Jack, Bowen, and particularly Rhett, considering your timely

arrival into this world three days into my doctoral journey, for always bearing with me as

I attempted to continually balance being both the student and the teacher, the friend and

the disciplinarian and hopefully, if nothing more, a motivator for the three of you to explore

your own future adventures. Lastly, to my parents, my sister, my in-laws, and my friends,

for understanding an ambition to turn dreams into reality and never questioning my

prioritization throughout this undertaking. You have all given me the strength and backing

to persevere, and I cannot thank you all enough.

www.manaraa.com

v

Acknowledgement

I also wish to thank my colleagues and counterparts at Northrop Grumman (both

current and former), in particular Mike Violet, Brian Marland, Mike McMeekin, Todd

Wantuch, Dr. Brian Barden, and Cassidy Chan. Our thought provoking conversations and

desire to solve challenging problems continues to fuel the yearning to not only learn, but

to chart new paths. Thank you for your continued inspiration and the support to make this

journey happen.

Additionally, my gratitude to my advisors, Dr. Thomas Mazzuchi and Dr. Shahram

Sarkani. Without your direction, advice, and continued counseling, none of this would have

been possible. Thank you as well to Dr. Thomas Holzer for your thorough review, patience,

and advisement in the finalization of this manuscript. Lastly, I would like to thank the

professors and staff in The George Washington University, Engineering Management &

Systems Engineering program. You are the ones who make all of this possible on a daily

basis. Thank you.

www.manaraa.com

vi

Abstract of Dissertation

Towards Polymorphic Systems Engineering

Systems engineering is widely regarded as a full life cycle discipline and provides

methodologies and processes to support the design, development, verification,

sustainment, and disposal of systems. While this cradle-to-grave concept is well

documented throughout literature, there has been recent and ever-increasing emphasis on

evolving and digitally transforming systems engineering methodologies, practices, and

tools to a model-based discipline, not only for advancing system development, but perhaps

more importantly for extending agility and adaptability through the later stages of system

life cycles – through system operations and sustainment.

This research adopts principles from the software engineering domain DevOps concept

(a collaborative merger of system development and system operations) into a Systems

Engineering DevOps Lemniscate life cycle model. This progression on traditional life

cycle models lays a foundation for the continuum of model-based systems engineering

artifacts during the life of a system and promotes the coexistence and symbiosis of variants

throughout. This is done by facilitating a merger of model-based systems engineering

processes, tools, and products into a surrogate and common modeling environment in

which the operations and sustainment of a system is tied closely to the curation of a

descriptive system model. This model-based approach using descriptive system models,

traditionally leveraged for system development, is now expanded to include the operational

support elements necessary to operate and sustain the system (i.e. executable procedures,

command scripts, maintenance manuals, etc. modeled as part of the core system). This

evolution on traditional systems engineering implementation, focused on digitally

www.manaraa.com

vii

transforming and enhancing system operations and sustainment, capitalizes on the ability

of model-based systems engineering to embrace change to improve agility in the later life

cycle stages and emphasizes the existence of polymorphic systems engineering

(performing a variety of systems engineering roles in simultaneously occurring life cycle

stages to increase system agility).

A model-based framework for applying the Systems Engineering DevOps life cycle

model is introduced as a new Systems Modeling Language profile. A use-case leveraging

this “Model-Based System Operations” framework demonstrates how merging operational

support elements into a spacecraft system model improves adaptability of support elements

in response to faults, failures, and evolving environments during system operations,

exemplifying elements of a DevOps approach to cyber-physical system sustainment.

www.manaraa.com

viii

Table of Contents

Dedication .. iv�

Acknowledgement ... v�

Abstract of Dissertation ... vi�

List of Figures .. xiii�

List of Tables .. xvi�

List of Acronyms ... xvii�

Chapter 1:� Introduction .. 1�

1.1� A Brief Taxonomy ... 1�

1.2� Problem Identification & Description .. 4�

1.2.1� Background on Systems Engineering Evolution ... 5�

1.2.2� Full Life Cycle Need for Model-Based Systems Engineering 6�

1.2.3� A Related Problem-Space – Lessons from Software Engineering 8�

1.3� Thesis Statement.. 9�

1.4� Research Questions & Objectives .. 10�

1.4.1� Research Questions ... 10�

1.4.2� Objectives ... 10�

1.5� Hypothesis ... 11�

1.6� Proposed Solution to Enable Polymorphic Systems Engineering: The

SEDevOps Lemniscate & MBSO .. 12�

1.7� Significance, Findings, and Conclusions .. 13�

www.manaraa.com

ix

1.8� Summary of Dissertation ... 14�

Chapter 2:� Literature Review ... 16�

2.1� Literature Review Map .. 18�

2.1.1� Primary Disciplines ... 19�

2.1.2� Secondary & Intersecting Disciplines .. 19�

2.1.3� Method of Literature Presentation .. 20�

2.2� Systems Engineering ... 20�

2.2.1� Systems Engineering Definition ... 20�

2.2.2� Recent Developments in Systems Engineering ... 23�

2.2.2.1� Model-Based Systems Engineering .. 23�

2.2.2.2� Agile Systems Engineering .. 25�

2.3� Software Engineering .. 26�

2.3.1� Software Engineering - Why Systems Engineers Care 26�

2.3.2� Recent Advancements in Software Engineering ... 27�

2.3.2.1� Microservices .. 27�

2.3.2.2� DevOps ... 29�

2.3.3� Opportunities for Systems Engineering Advancement through Software

Engineering Advancements ... 30�

2.4� System Life Cycles .. 32�

2.4.1� Life Cycle Definition ... 32�

2.4.2� Sequential & Plan-Driven Life Cycle Models .. 35�

2.4.3� Evolutionary & Concurrent Life Cycle Models .. 37�

2.4.4� Interpersonal & Emergent Life Cycle Models .. 40�

www.manaraa.com

x

2.5� Digital Engineering ... 43�

2.5.1� Definition of Digital Engineering... 43�

2.5.2� Recent Developments in Digital Engineering ... 44�

2.6� Cross-Cutting Topics ... 45�

2.6.1� Formal Methods .. 46�

2.6.2� Safety Critical Systems .. 47�

2.7� Bringing It All Together – Summarizing the State of the Art with a Call to

Action ... 47�

Chapter 3:� Research Methods, Resulting Life Cycle Methodology & Framework 49�

3.1� Research Methodology Overview .. 49�

3.1.1� The Inventor’s Paradox .. 49�

3.1.2� Architecture, Methodology, Framework Development 50�

3.1.3� Methodology Map ... 50�

3.2� Introducing the Systems Engineering DevOps Lemniscate........................... 51�

3.2.1� Putting It Together into SEDevOps .. 51�

3.2.2� Description of Parts from Existing Life Cycle Models 54�

3.2.3� Focus on Test to Enable Continuous Integration, Test, & Deployment 57�

3.2.4� Addressing Decommissioning ... 59�

3.2.5� Continuity & Collaboration Throughout the Life Cycle 60�

3.2.6� Evolution & Adaptation ... 62�

3.2.7� SEDevOps Summary ... 63�

3.3� A Framework for Applied Methodology: Model-Based System Operations . 64�

3.3.1� Summary ... 64�

www.manaraa.com

xi

3.3.2� MBSO Domain Specific Language Components .. 66�

3.3.3� Life-In-A-Day (LIAD) Testing .. 69�

3.3.4� MBSO Modeling Methodology ... 71�

3.3.5� MBSO Extension with Formal Methods .. 76�

Chapter 4:� Data Collection & Analysis ... 78�

4.1� Data Source: FireSat-II Modified through MBSO .. 81�

4.1.1� FireSat-II Base Model.. 81�

4.1.2� MBSO Extension to FireSat-II Model .. 85�

4.2� Use Case: Life-In-A-Day Simulation & Response 92�

4.2.1� Impact to Critical Unit Failure & Simplified Ops Product Roll-Out 92�

4.2.2� Discussion on Cost & Implications .. 97�

4.2.3� Use Case Summary .. 100�

4.2.4� Discussion on Additional Use Cases .. 100�

4.2.4.1� Managing Recurring Unit Toggles Use Case – A Candidate for Formal

Methods Application ... 101�

4.2.4.2� A Mission Expansion Use Case – A Return to the Development Cycle 102�

4.3� Summarizing the Insight Gained Through Use Cases and Addressing

Hypothesis ... 103�

Chapter 5:� Conclusions ... 106�

5.1� What was Accomplished: Contributions to the Field 106�

5.2� What was Not Accomplished and Limitations of Findings 108�

5.3� Areas of Future Research ... 109�

5.3.1� Formal Methods & Safety Critical System Operations 109�

www.manaraa.com

xii

5.3.2� Autonomic System Operations .. 109�

5.3.3� Prognostics, Diagnostics, & Data Trending .. 110�

5.4� Research Benefits & Potential Implementation Challenges 111�

5.4.1� Benefits of SEDevOps ... 111�

5.4.2� Benefits of MBSO ... 112�

5.4.3� Potential Implementation Challenges ... 113�

5.5� Final Remarks ... 114�

Chapter 6:� Bibliography.. 116�

www.manaraa.com

xiii

List of Figures

Figure 1 - Literature Map .. 19�

Figure 2 - Generic System Life Cycle (Blanchard and Blyer 2016). 32�

Figure 3 - INCOSE Generic System Life Cycle Stages (adapted from INCOSE 2015). . 33�

Figure 4 - Vee Life Cycle Model (adapted from Douglass 2016) 36�

Figure 5 - Iterative and Incremental Development Life Cycle Model (Forsberg, Mooz

and Cotterman 2005) ... 38�

Figure 6 - Spiral Life Cycle Model (adapted from Douglass 2016) 39�

Figure 7 - Agile Methodology (Boehm and Turner 2004) .. 41�

Figure 8 - Representative DevOps Life Cycle Process (Compuware 2019) 42�

Figure 9 - Research Methodology Map ... 51�

Figure 10 - The SEDevOps Life Cycle Model ... 52�

Figure 11 - Feature Sources in the SEDevOps Life Cycle Model................................... 53�

Figure 12 - Notional Expansion of System Boundaries in SEDevOps 54�

Figure 13 - System Adaptation & Evolution via the SEDevOps Life Cycle Model 63�

Figure 14 - MBSO Ontology Represented in SysML Profile Diagram 65�

Figure 15 - MBSE and MBSO Focus in the SEDevOps Life Cycle Model 70�

Figure 16 - View of MBSO Profile Organization .. 72�

Figure 17 - MBSO Operational Element Stereotype Details in SysML Profile Diagram 73�

Figure 18 - MBSO Operational Element Stereotype Applied to Physical Architecture

in a SysML bdd (adapted from Friedenthal 2017) .. 74�

Figure 19 - Applying Operational Status Attributes in a SysML ibd (adapted from

Friedenthal 2017) .. 75�

www.manaraa.com

xiv

Figure 20 - FireSat-II Model Organization prior to MBSO Integration (Friedenthal

2017) ... 82�

Figure 21 - FireSat-II Spacecraft (Friedenthal 2017) ... 82�

Figure 22 - FireSat-II Spacecraft Physical Decomposition, 2nd Level (Friedenthal

2017) ... 83�

Figure 23 - FireSat-II Spacecraft Subsystem Interconnection (Friedenthal 2017) 84�

Figure 24 - MBSO Operational Element Stereotype Applied to Existing Physical

Architecture in SysML bdd and ibd (adapted from Friedenthal 2017) 86�

Figure 25 - Notional FireSat-II Command Database created with MBSO Profile

Elements, in a Customized SysML Table Diagram 88�

Figure 26 - Notional FireSat-II Telemetry Database created with MBSO Profile

Elements, in a Customized SysML Table Diagram 89�

Figure 27 - FireSat-II Notional Command & Telemetry Element Interrelation in a

SysML Dependency Matrix ... 90�

Figure 28 - Command & Telemetry Interrelationship to Inertial Measurement Unit in

SysML Block Definition Diagram ... 91�

Figure 29 - Command & Telemetry Interrelationship to High Rate (HR) Transmit

Amplifier Unit in SysML Block Definition Diagram 91�

Figure 30 - FireSat-II Model Organization Following MBSO Integration (adapted

from Friedenthal 2017) .. 92�

Figure 31 - SysML Activity Diagram representing the Flow of Actions for Command

Procedure to Reconfigure Power Loads for Failed Converter Unit 93�

www.manaraa.com

xv

Figure 32 - Customized SysML Table Diagram representing the Command Procedure

to Reconfigure Power Loads for Failed Converter Unit 94�

Figure 33 - FireSat-II Procedural Step Dependency Matrix in SysML 95�

www.manaraa.com

xvi

List of Tables

Table 1 - Life Cycle Model Comparison ... 34�

Table 2 - SEDevOps Characteristics ... 56�

Table 3 - Customized Elements in the MBSO Ontology .. 67�

Table 4 - Research Questions Answered ..104�

www.manaraa.com

xvii

List of Acronyms

bdd Block Definition Diagram (SysML)

CONOPS Concept of Operations

DE Digital Engineering

DevOps Development & Operations

DITL Day In The Life

DoD Department of Defense

DSL Domain-Specific Language

ibd Internal Block Diagram (SysML)

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IID Incremental and Iterative Development

INCOSE International Council on Systems Engineering

ISO International Organization for Standardization

LCC Life Cycle Cost

LIAD Life In A Day

M&S Modeling & Simulation

MBE Model-Based Engineering

MBSE Model-Based Systems Engineering

MBSO Model-Based System Operations

NASA National Aeronautics and Space Administration

NDIA National Defense Industrial Association

www.manaraa.com

xviii

SEBoK Systems Engineering Book of Knowledge

SEDevOps Systems Engineering Development & Operations

SLC Signature, Limitation, & Constraint

SOI System of Interest

SW Software

SysML Systems Modeling Language

UML Unified Modeling Language

www.manaraa.com

1

Chapter 1:� Introduction

1.1� A Brief Taxonomy

In order to properly frame the concepts and applications in this body of work, it is

imperative to describe in a brief taxonomy the specific connotation of foundational terms

introduced in the title and abstract and used throughout this manuscript.

The term polymorph can be traced back to Greek roots and quite literally means “of

many (poly) forms (morphe)” (Dictionary.com 2020). Polymorphic therefore describes

something occurring in many different forms and is traditionally applied in a biological

sense to entities which have evolved into multiple simultaneously occurring variants. The

software engineering realm has adopted the concept of polymorphic functions applied in a

way as to take on different variable types and behaviors at different times. The application

of this in the software domain is to establish the ability “to satisfy dynamic reconfiguration,

plug-n-play, extensibility, and system redundancy requirements” (Bryson 2010). Common

to polymorphic elements, and necessary to make polymorphic software functions work, is

the existence of a single interface capable of representing all variants taken on by that entity

(Bryson 2010).

As described in detail in Chapters 2 & 3, systems engineering, and therefore Model-

Based Systems Engineering (MBSE), is a discipline required to take on many forms

throughout the life cycle of a system in order to ensure system success. What is currently

missing from the intrinsic elements of MBSE is 1) this concept of a common MBSE

interface throughout a full system life cycle, and 2) the implementation of MBSE in

different forms at each stage of a system’s existence, including at times simultaneously in

www.manaraa.com

2

different stages such as in system operations and system development (i.e. supporting and

performing continual system development while in the system operations stage).

Another homage to Greek roots is the use of the term lemniscate and its application

here to engineering methodology, introduced and applied in the concepts to follow. In

Greek, lemniscate can be translated as “laying of ribbon” and has, over many years, taken

on a variety of forms most typically in a descriptive mathematical sense, including the

infinity symbol (Erickson 2011). What is of most significance to the concepts introduced

herein is the notion and importance of a continuum as applied to the stages of a system’s

life cycle, discussed in greater detail and context in Section 3.2.

According to ISO/IEC/IEEE Standard 15288, typical generic system life cycle stages

are broken out to concept, development, production, utilization, support, and retirement.

For the purposes of life cycle discussions throughout this manuscript, the stages of concept,

development, and production are grouped into the generalized “development phase,” or

stage, while utilization, support, and retirement are grouped into the generalized

“operations phase,” or stage. This distinction is discussed during the literature review on

life cycles in Section 2.4 as well as throughout the concepts introduced in Sections 3.2 and

3.3.

Digital Engineering is defined “as an integrated digital approach that uses authoritative

sources of system data and models as a continuum across disciplines to support life cycle

activities from concept through disposal” (U.S. Department of Defense 2018). Throughout

this manuscript, Digital Engineering is considered the discipline charged with advancing

digital toolchains, ecosystems, and methods. Digital toolchains are considered throughout

as the combination of several interrelated tools that facilitate data management,

www.manaraa.com

3

visualization, development, and use. An example of a common digital toolchain is the

Microsoft Office suite of applications which are capable of interrelating and broadly using

data created and managed in any of the applications. A digital ecosystem is the full

environment in which data resides throughout the life of that data. Using the Microsoft

Office example again, the ecosystem would then include the machines and operating

systems on which the applications are used, the data storage mechanisms (i.e. servers or

drives), the network on which the data is accessed and maintained, etc.

A descriptive model as used throughout this work refers to an object-oriented model of

elements with detailed, interrelated metadata properties. The Systems Modeling Language

(SysML) is a common language for building descriptive models in the systems engineering

domain.

Agility, used herein, can be defined as “the capability to successfully cope with changes

in circumstances” (Alberts 2011). This is one of the foundational elements of the work to

follow and is used throughout in the context as defined by Alberts.

The term framework is generally used to describe a basic structure on which additional

details, uses, and systems can be built. It is used in the context of a modeling framework

in this text on which to build cohesive, detailed, and coordinated descriptive models

according to inherent guidance within the modeling profile.

While a concise and widely agreed upon definition of cyber-physical system does not

yet exist (SEBoK Editorial Board 2020), the use in this manuscript is in the context of a

system in which hardware is integrated with computing platforms to control the physical

processes of the system. Cyber-physical systems therefore entail more than purely software

applications.

www.manaraa.com

4

Lastly, the concept of Model-Based suggests the creation and curation of a surrogate,

or model, on which to closely base elements of reality. The specific application of the term

throughout this manuscript denotes a digital version of a model. In concert with the

application of life cycle stages across a lemniscate arrangement, a digital model-based

existence enables a common interface for MBSE implementation and interaction

throughout the life of any system. In other words, a common modeling language and

source-of-truth data repository through which to develop, modify, and retrieve data

products throughout the life of a system.

With the taxonomy introduced, it is now possible to dive into foundational elements of

the problem addressed in the ensuing manuscript.

1.2� Problem Identification & Description

Since MBSE's 2007 inception, it has rarely been applied beyond a system’s

development stage resulting in lost opportunities for improved agility and cost reductions

during the utilization, support, and retirement stages.

Systems Engineering is broadly acknowledged as a full life cycle discipline and the

application of MBSE is therefore intended to support the entire life cycle (INCOSE 2015).

Despite this, MBSE has primarily been applied to the design of operations and seldom

leveraged to actively support change, improve agility, and reduce resultant costs during the

system operations and sustainment stages, which historically account for >50% of overall

life cycle costs (Madni and Sievers 2018), (INCOSE 2015). As noted by traditional

technical authorities as well as progressive practitioners in the discipline, systems

engineering is in the midst of a transformation to a more digital and agile discipline (Dove

and LaBarge 2014), as evidenced by the continuing trend towards MBSE implementation

www.manaraa.com

5

(Madni and Sievers 2018). However, as a full life cycle discipline, there is an opportunity

for stronger focus on applications of MBSE practices and products during the operations

and sustainment stages of a system’s life cycle (INCOSE 2014), (U.S. Department of

Defense 2018).

The INCOSE Systems Engineering Vision 2025 articulates the need for systems

engineering evolution during later life cycle stages, stating “the systems engineering

discipline will expand its applicability and recognition along several fronts” including

“increased emphasis on downstream life cycle phases such as sustainment” (INCOSE

2014). Additionally, the 2018 Digital Engineering Strategy by the U.S. Department of

Defense identified a focus of its Goal #1 on “the formalized application of modeling to

support all the system life cycle phases from concept through disposal” (U.S. Department

of Defense 2018).

The research provided in this manuscript addresses methods for increasing the MBSE

emphasis during downstream life cycle stages by revisiting the generic life cycle model as

defined by ISO 15288 to determine if a variation improves the emphasis and utility of a

model-based support framework as a means to improve agility and reduce costs during

system operations.

1.2.1� Background on Systems Engineering Evolution

Systems engineering is an evolutionary practice, evolving at the macro level as a

discipline by necessity to support and enable the ever-growing complexity of systems, and

evolving at the micro level throughout any particular system life cycle to continually unify

and drive system success (Dove and LaBarge 2014). As noted in Section 1.2, recent

systems engineering visionary documents, including the International Council On Systems

www.manaraa.com

6

Engineering’s (INCOSE’s) Systems Engineering Vision 2025 (INCOSE 2014), and the

U.S. Department of Defense’s Digital Engineering Strategy (U.S. Department of Defense

2018), place an increasing emphasis on agility (the ability to handle change) with a clear

“call-to-action” to push the boundaries of the systems engineering discipline across the

entire life cycle of systems. This, coupled with continual and accelerating advancements

in Digital Engineering toolchains, has prompted systems engineers to explore evolving

practices and processes to enable a digital life cycle thread (an interrelated toolchain for

managing systems engineering process and products throughout the life of a system) and

to develop the requisite systems engineering specific tools, processes, and methodologies

to promote this digital transformation. To date, and as articulated through the detailed

literature review throughout Chapter 2, this transformation has been concentrated most

notably on the development stages of the system life cycle (as defined in the taxonomy

presented in Section 1.1). This has enabled significant improvements in the areas of system

design and test, poising the discipline for further improvements to model-based approaches

during system operations and sustainment.

1.2.2� Full Life Cycle Need for Model-Based Systems Engineering

Despite the acknowledgement of application within systems engineering doctrine on

the full life cycle, details and guidance on MBSE-specific products, processes, and

practices, beyond the development stages of a system are limited (Madni and Sievers

2018). As noted by Blanchard and Blyer in Systems Engineering Management, “Although

a great deal of emphasis has been placed on minimizing the costs associated with the

procurement and acquisition of systems, little attention has been paid to the costs of system

operation and support” (Blanchard and Blyer 2016). Along those lines, visual

www.manaraa.com

7

representations of current widely accepted life cycle models such as the Systems

Engineering Vee, Waterfall, Spiral, and even the more recent Agile model generally

conclude with an identified hand-off to system operations and sustainment without detailed

representation of the stages beyond (Douglass 2016). Section 2.4 investigates this in more

detail, including a review of the general strengths and shortcomings with respect to systems

engineering applications across a variety of widely accepted and broadly practiced life

cycle models.

Given that “the utilization and support stages of a system usually account for the largest

portion of the total LCC” (life cycle cost) (INCOSE 2015), why has the focus on a model-

based transformation within the discipline not been extended to support, enhance, and

streamline the “largest portion” of the total life cycle cost? One potential answer, per

NASA’s “Systems Engineering Engine,” is that once in the operational stage, any upgrade

or capability development invokes a restart of earlier life cycle stages to leverage systems

engineering development processes and products (NASA 2017). Whereas this may be a

logical approach, it assumes the structure, personnel, and most importantly contract

vehicles are in place for development teams leveraging the necessary processes and

products to support operational systems. In reality, this restart often reveals a disconnect

within the organization exemplified by a lack of available resources including lack of

personnel, out-of-date systems engineering products and lack of funding and prioritization

for systems engineering team involvement during operational stages.

In addition to the noted organizational challenges, how should procedural and

documentation updates in response to faults and failures during system operations be

handled, which are neither system upgrades nor new capabilities? According to the NASA

www.manaraa.com

8

Systems Engineering Handbook, systems engineering efforts, resources, and schedules

during operations are typically constrained, resulting in system operations and maintenance

teams assuming the responsibility for more traditional systems engineering tasks and

management of associated system level products (NASA 2017). This results in increased

risk during system operations due to complexities associated with necessary adaptation and

ad hoc development, many times performed by non-development and non-systems-

engineering-versed personnel, to sustain a system in dynamic environments and in

response to faults and failures. Therefore, systems operations and maintenance teams are

many times left without the complete tools and processes to adequately, robustly, and

quickly address the continual adaptation and improvement required during the operational

life of a system resulting in lost opportunities for agility and increased costs to sustain a

system.

1.2.3� A Related Problem-Space – Lessons from Software Engineering

Similar disconnects and discrete hand-offs from development teams to sustainment

teams have been encountered in the software domain. In recent years, the delineation

between development and operations teams has been steadily dissolving and the

environments and tools with which they work have been increasingly merging in order to

handle the growing need for agility, responsiveness, and faster-to-market capabilities. The

widely growing practice of DevOps is enabling rapid evolution in the software domain and

emphasizes continuous development, integration, and delivery. Additionally, through very

closely linking the software development environment with the operational software

environment, a realistic and continuously representative platform is established for

maintaining, updating, testing, and incrementally rolling-out code. The result is companies

www.manaraa.com

9

such as Amazon who are fully entrenched in the DevOps process, are deploying snippets

of code to their operational systems every 11.7 seconds, on average (Null 2020). Sections

3.2 and 3.3 explore adapting the DevOps approach of integrating and streamlining

development capabilities, products, processes, and tools with a model-based systems

engineering construct for operational systems resulting in a proposed framework to support

maintenance and modification of procedures and scripts seamlessly during system

operations.

1.3� Thesis Statement

Based on the identified need for MBSE implementation to evolve and take on

additional forms at later stages in a system life cycle, a modified life cycle model is both

necessary and readily possible. This modified life cycle must focus on promoting agility

by enabling a continuous and multi-form, or polymorphic, existence of systems

engineering through MBSE. Polymorphism, in this sense, emphasizes the need to support

continual system development and modification during system operations. Leveraging

methodological advancements and applications in the software engineering domain, this

approach can be applied to the systems engineering domain with confidence of success

through the use of tools designed for collaboration and digital connectivity.

A model-based approach to systems engineering process and product management

throughout a system life cycle cultivates the strengths of MBSE achieved to date in the

system design and development stages. Expanding this approach into a dynamic and

extensible framework for all life cycle stages, including the operations and sustainment

stages of complex systems, improves agility by providing a common digital ecosystem and,

in fact, a multi-faceted interface fabric for polymorphic systems engineering.

www.manaraa.com

10

1.4� Research Questions & Objectives

1.4.1� Research Questions

In order to demonstrate the assertion that a continuous life cycle model built on a

model-based product core will provide the methodology and framework for evolving

systems engineering into a polymorphic and agile discipline throughout an entire system

life cycle, the following research questions were derived and drove the investigation that

follows.

1.� Can the generic systems engineering life cycle model be expanded to

promote the same rigorous, centralized and interrelated model-based

approach leveraged in system development into and throughout system

operations and sustainment?

2.� Can the MBSE methodology and associated toolchains be adapted to the

operational stages of a system’s life cycle?

3.� Can this adaptation of MBSE provide an adequate framework for enabling

continuous model-based system development during the operational stages

of a system thereby improving efficiency, agility, and operational

availability over traditional system engineering practices and methods?

1.4.2� Objectives

Out of these questions, the following two research objectives were formulated and

served as guiding concepts through literature reviews, methodology and framework

development, and data collection and analysis.

1.� Develop a modified life cycle model inclusive of 1) the traditional

development stages and supportive of the existing approaches to systems

www.manaraa.com

11

engineering implementation of these stages as well as 2) the operations

stages in such a way as to promote agility, adaptability, and polymorphism

through multiple directed paths and interactions between those stages.

2.� Develop a model-based framework for systems engineers to leverage for

developing the products and implementing the process of this modified life

cycle model within a digital ecosystem.

1.5� Hypothesis

The hypothesis for the research to follow is that defining a modified life cycle model

and associated methodology along with a new framework for hosting and dynamically

linking descriptive, model-based system elements from all stages, including most notably

the operational support elements (i.e. operational scripts/procedures/functions) will enable

greater agility and reduced life cycle costs compared to current methods. The prior

statement is focused on the systems engineering functions executed during system

operations, including adaptation to environmental evolution and system aging.

A byproduct of normalizing the modeling methodology and tools across all life cycle

stages, inclusive of system development and system operations, is the bidirectionality of

information flow via a common modeling environment to improve execution at any life

cycle stage. In other words, system development models can be directly linked to

operational support products in descriptive model-space and modifications to system

elements in operations can be tied back to model-based development products to inform

future system adaptations and evolutions, as required. This is explained in more detail in

Section 3.2.6.

www.manaraa.com

12

1.6� Proposed Solution to Enable Polymorphic Systems Engineering: The SEDevOps

Lemniscate & MBSO

The concepts introduced in Chapter 3 and demonstrated in Chapter 4 build on the basis

of traditional system life cycle models by incorporating specific elements from more recent

models and draw from current advancements in the closely related field of software

engineering to propose a variation on the view of the system life cycle from a primarily

MBSE perspective. This is based on principles employed in the DevOps mindset: a

collaborative merger of development and operational tools, processes, products, and

practices.

The resulting contributions to the body of knowledge by this work are:

1.� A modified systems engineering life cycle model and associated methodology

focused on improving agility throughout an entire life cycle by formally

interconnecting model-based elements from system development with newly

introduced model-based elements from operations and sustainment, coined

Systems Engineering DevOps (SEDevOps). (Addressing Objective #1)

2.� A domain-specific modeling language extending the application of MBSE to

system operations, enabling the realization of a full-duplex digital thread from

development through operations and back, labeled Model-Based System

Operations (MBSO). (Addressing Objective #2)

These products are the result of a wide survey of recent advancements in systems

engineering and applications in software engineering, described in detail in Sections 2.2

and 2.3.

www.manaraa.com

13

1.7� Significance, Findings, and Conclusions

As demonstrated through the literature review, the need for MBSE evolution continues

to expand. Systems continue to grow in complexity, almost entropically, timelines continue

to be compressed, and performance continues to be driven to the maximum as

technological advancements provide both evolutionary and revolutionary catalysts. The

exploration of methodological applications beyond traditional systems engineering

provides a plethora of proving grounds for process and toolchain advancements.

Combining proven advancements from other fields into the systems engineering discipline

and, more specifically the application of MBSE as described through the concepts herein,

drives the adaptability of the methods and processes onward enabling systems engineers to

advance their focus on solving system problems of escalating complexity going forward.

Along those lines, the benefits of the proposed methodology are demonstrated through

a use case extending MBSE tools and products for use in the operational stages of a system

to facilitate an improved full life cycle approach to systems engineering through MBSE.

Resultant findings corroborate the hypothesis that a fully interrelated continuum,

promoting continual development and test during operations through an associated model-

based toolchain improves system awareness, responsiveness and adaptability to events

encountered during system operations.

Through the life cycle model proposed and demonstrated by implementing the

associated MBSO framework, systems engineering is empowered to leverage a common

digital ecosystem and model-based products and processes in multiple states during both

sequential and simultaneous life cycle stages, therefore moving the systems engineering

discipline one step closer towards polymorphic functionality.

www.manaraa.com

14

1.8� Summary of Dissertation

The remainder of this manuscript is organized as follows:

Chapter 2 starts with the evolution of this particular topic as it relates to existing

literature, describing the desired outcome at the onset followed by preliminary findings

which resulted in the advancements presented in Chapter 3. Chapter 2 goes on to provide

a detailed review of systems engineering and system life cycles, the call to action for

enhancements to digital and model-based systems engineering, particularly during the

latter stages of a system’s life cycle, and an introduction to relevant methodological

advancements in the software engineering domain which serve as the foundation for the

concepts to follow.

Chapter 3 presents an evolution on the generic systems engineering life cycle model

through applying principles employed in the software domain’s DevOps practice, termed

SEDevOps. This is accompanied by an introduction to an ontology and a model-based

framework enabling the implementation of this methodology as an extension to MBSE,

coined MBSO.

Chapter 4 describes an instantiation of SEDevOps leveraging the descriptive modeling

elements of MBSO. By merging the system operations element environment, composed of

operational support products (i.e. command procedures, configurations, etc.), with a system

model for the notional FireSat-II spacecraft, the applicability and benefits from a systems

engineering perspective are demonstrated.

Finally, Chapter 5 concludes with an explanation of the advancements presented in this

work, a description of areas of opportunity for continued and future work, including an

www.manaraa.com

15

extrapolation to possible advancements, and a discussion of the benefits as well as potential

challenges and drawbacks of SEDevOps and MBSO.

www.manaraa.com

16

Chapter 2:� Literature Review

The initial question sparking the exploration into MBSE applications throughout life

cycles and model-based instantiation of general systems engineering doctrine was:

Can systems engineering support specific to operations and maintenance/sustainment

be codified in a manner to enable autonomic system operations?

In other words, can nominal and, more importantly, off-nominal system operations be

performed with not only the systems engineers fully out-of-the-loop (i.e. not involved), but

also the system operations and maintenance team out-of-the-loop as well; can a system

truly self-adapt? As a note, the use of roles here for systems engineers versus operations

and maintenance personnel is derived from the Logistics & Operations (LO) role

introduced in Sarah Sheard’s Twelve Systems Engineering Roles (Sheard 1996). A

tangible example of the above application is deep space exploration (Truszkowski, et al.

2009). Can a space system hundreds of millions of miles away and dozens of minutes

delayed in communications perform self-sustained agile system operations in any scenario,

including off-nominal, failure circumstances? Today, systems of this nature are designed

to respond with pre-programmed if/then responses to isolate off-nominal equipment,

without true self-awareness or prognostic behavior in order to configure to a “safe” state

while awaiting further investigation and direction from earth-bound systems engineers. In

an attempt to leverage the strength in response to change that MBSE brings during system

design and development stages (Delligatti 2014), the driving motivation to the above

concept was to codify the process to make necessary changes to operational support

products during system operations through a model-based toolchain implemented during

the system operations and sustainment stages.

www.manaraa.com

17

The concept proposed is rather straightforward but relies on a foundational assumption

that model-based processes and products leveraged by systems engineers and operations

and maintenance personnel during the system operations stage already exist, are equally as

robust as the model-based processes leveraged during the design, development, and

deployment stages, and are in a common language to prior life cycle stages.

What was quickly found in practice through a deep dive into literature is that a clear

implementation of MBSE methods, tools, and processes focused on active use during the

operations and sustainment stages of a system life cycle does not yet exist. As will be

presented in detail in this chapter, widely accepted life cycle models in systems engineering

doctrine, on which current MBSE languages and tools are based, focus heavily on the early

stages of a system’s life cycle and present an opportunity to expand focus to model-based

implementations in later life cycle stages. In this deep dive, it was also found that

advancements in systems engineering applications leveraging Digital Engineering

innovations are increasing rapidly for the design of, and preparation for system operations,

however continued use and support during operations was not readily discovered. This

addresses the case within the Logistics and Operations role noted by S. Sheard where

systems engineers can serve as operations and maintenance personnel (Sheard 1996) and

can ideally provide more rapid response to necessary adaptation during system operations

with the proper tools and products available.

Therefore, in order to address the initial question regarding codifying and automating

the adaptability required during system operations, a wider net was cast to broaden the

review on systems engineering methodologies, processes, and tools. The resulting theme

www.manaraa.com

18

articulated in the ensuing sections shows that practitioners and academics alike consistently

identify two key areas of need and opportunity:

1)� MBSE advancement to later life cycle stages

2)� Increased agility through a digital transformation for systems engineering as a

discipline

This chapter explores foundational elements of both of these topics in detail and

concludes with a summary and reiteration of the call-to-action to enhance systems

engineering on these two fronts (INCOSE 2014), (U.S. Department of Defense 2018).

Based on these findings, before autonomic applications can be developed and deployed for

complex system operations, appropriate MBSE methodologies and tools must be

introduced to enable this evolution. The overlap in a Venn diagram of the two areas of

opportunity identified above, systems engineering and aspects of Digital Engineering, is

where Chapter 3 focuses.

2.1� Literature Review Map

As identified, the two primary areas of focus in the ensuing review of relevant work

are Systems Engineering and Digital Transformation supported through advancements in

applications within the broader Digital Engineering domain. What was quickly found is the

reliance on and in fact coexistence of these two topics with Software Engineering (and

software itself) and vice versa. Figure 1 depicts a notional representation of the major

discipline relationships in blue and introduces nuanced elements of the deeper literature

review performed across additional fields, in white. As can be noted in the figure, there is

considerable overlap in topics and disciplines, therefore elements of each sub-topic may

appear across discussions of each discipline.

www.manaraa.com

19

Figure 1 - Literature Map

2.1.1� Primary Disciplines

As noted in Section 1.2, recent calls to action for evolving the systems engineering

domain are focused on broadening model-based systems engineering applications across

system life cycles and enhancing the digital ecosystem leveraged by systems engineers.

Coupling this with the topic on autonomicity introduced at the start of this chapter, the

literature review focuses on topics encompassed by the primary disciplines of Systems

Engineering and Digital Engineering. Closely related and overlapping these two areas, the

quickly advancing discipline of Software Engineering is also a primary topic area,

including methods, tools, and processes.

2.1.2� Secondary & Intersecting Disciplines

The three primary disciplines have many shared and overlapping sub-topics and sub-

disciplines. These include prognostics and health management (PHM), digital twins,

�������
	
��

������
	
��

���������	
��

��	

�������
�������

�������
���������
�������

���

�����������

�������
���
�

�����

 !��

���	

www.manaraa.com

20

applications of formal methods for streamlined verification purposes, life cycle

management, and many more. The noteworthy areas considered in this review are

identified as smaller elements on the literature map in Figure 1 and are discussed

throughout this chapter.

2.1.3� Method of Literature Presentation

Findings from the detailed literature review are presented by primary discipline.

Secondary topics are grouped within the most closely correlated primary discipline or,

where fully shared by all three, documented in the Cross-Cutting subsection (Section 2.6).

For example, PHM is a topic employed in both systems engineering and software

engineering applications however it is primarily enabled by Digital Engineering tools,

therefore it is presented as part of the Digital Engineering review.

System life cycles are introduced briefly in both systems and software engineering for

reasons that will be apparent as the content is presented and is therefore covered in more

depth in a dedicated subsection. System life cycle models have deep roots in systems

engineering, while in more recent years, have been informed and evolved through

advancements in software engineering applications.

2.2� Systems Engineering

2.2.1� Systems Engineering Definition

Systems Engineering is a widely practiced engineering discipline bridging all facets of

realizing successful systems from conception to decommission and is defined as such

throughout technical literature, (ISO 2015), (INCOSE 2015), (NASA 2017), (Blanchard

and Blyer 2016), (Blanchard and Fabrycky 2006), (Douglass 2016). Perhaps most

www.manaraa.com

21

concisely articulated in ISO/IEC/IEEE Standard 24765-2017, Systems Engineering is an

“interdisciplinary approach governing the total technical and managerial effort required to

transform a set of stakeholder needs, expectations, and constraints into a solution, and to

support that solution throughout its life” (ISO 2017). The INCOSE Fellows recently

modified the definition of Systems Engineering to “a transdisciplinary and integrative

approach to enable the successful realization, use, and retirement of engineered systems,

using systems principles and concepts, and scientific, technological, and management

methods” (SEBoK Editorial Board 2020). Common to these definitions is the open

acknowledgement of “integrative” and “total” support throughout the life of a system. With

the advent of MBSE and the growing application, it is reasonable to expect the integrative

and full life cycle application of MBSE.

Despite this, current widely accepted implementations of MBSE tools, processes, and

products focus most notably on the use in specification, design, development, and testing

of systems and have less focus on standardized products, processes, and general use beyond

the deployment and transition to operations of a system. Furthermore, specifics on the

continuum of model-based products from the development stages to the operational stages

is, in most cases, not specified and is an area of opportunity for evolving the application of

MBSE throughout the full life cycle.

Dove and LaBarge provide a slight alternative on the definition of systems engineering

with a focus on the cross-discipline problem solving and adaptability required for complex

systems, including the often-experienced emergent behavior of such complex systems.

Dove and LaBarge go on to identify that systems engineering is continually evolving and

work is in progress to enable adaptive and agile systems engineering, stating “we should,

www.manaraa.com

22

as practitioners and as researchers, identify and define design and operational guidance for

adaptive system engineering processes” (Dove and LaBarge 2014). Given that MBSE is

considered the application of modeling to support systems engineering implementation

throughout the life of a system (SEBoK Editorial Board 2020), it is logical to conclude that

MBSE should support and promote adaptability and agility in systems engineering

implementation.

To begin to frame the relevancy of system life cycle methodologies to systems

engineering implementation and, consequently, MBSE implementation, INCOSE provides

a useful description of systems engineering tasks and responsibilities:

“Systems engineering (SE) tasks are usually concentrated at the beginning of the life cycle, but

both industry and government organizations recognize the need for SE throughout the systems’

life span, often to modify or change a system product or service after it enters production or is

placed in operation. Consequently, SE is an important part of all life cycle stages. During the

utilization and support stages, for example, SE executes performance analysis, interface

monitoring, failure analysis, logistics analysis, tracking, management, etc. that is essential to

ongoing operation and support of the system.” (INCOSE 2015)

With that in mind, the more progressive methodologies of applied Systems Engineering

provide powerful, integrated, Digital Engineering and model-centric tools and modeling

languages to support systems engineering activities, yet they too are generally limited in

scope and applicability to use in defining, developing, and deploying systems (Douglass

2016), (Delligatti 2014), (Friedenthal, Moore and Steiner 2014). This dichotomy is gaining

attention and while currently established implementations of MBSE are focused on early

life cycle stages, the Systems Engineering Vision 2025 identifies later life cycle stages as a

key focus area in the near term (INCOSE 2014). Similarly, the United States Department

www.manaraa.com

23

of Defense Digital Engineering Strategy identified a focus of its Goal #1 on “the formalized

application of modeling to support all the system life cycle phases from concept through

disposal” (U.S. Department of Defense 2018). These “call-to-action” statements,

introduced in Section 1.2 and provided in context here, form the basis for much of the

additional research and concepts to follow.

Germane to the examination of systems engineering as a full life cycle discipline is a

review of the accepted definitions and examples of system life cycle methods, provided in

depth in Section 2.4, after exploring relevant advancements in the Software Engineering

field.

2.2.2� Recent Developments in Systems Engineering

The systems engineering discipline is advancing on multiple fronts, several of which

are relevant to the advancements presented in this work.

2.2.2.1� Model-Based Systems Engineering

MBSE methodologies and supported descriptive and parametric modeling languages

and tools facilitate the development of system models and owe much to the software

development domain which pioneered the use of unified model-based languages in the

1990’s with the advent of the Unified Modeling Language (UML) (Cloutier, et al. 2015).

UML enables not only the representation of modularized pseudocode, it facilitates fully

integrated elements through the definition of intricate metamodels, allowing for complex

and codified relationships among model elements. Systems engineers recognized the value

in representing, and more importantly relating system elements in this manner and adopted

UML as the basis for a modeling language, coined the System Modeling Language

(SysML) (Cloutier, et al. 2015). SysML empowers complex system architecting, design,

www.manaraa.com

24

development, and testing through fully integrated elemental modeling concepts previously

pioneered in the software domain. According to Friedenthal and Oster:

"SysML can be used to describe the following:

1.� The system breakdown as a hierarchy of subsystems and components

2.� The interconnection between systems, subsystems, and components

3.� The behavior of the system and its components in terms of the actions they perform,

and their inputs, outputs, and control flows

4.� The behavior of the system in terms of a sequence of message exchanges between its

parts

5.� The behavior of the system and its components in terms of their states and transitions

6.� The properties of the system and its components, and the parametric relationships

between them

7.� The text-based requirements which specify the mission, system, and components and

their traceability relationships to other requirements, design, analysis, and verification"

(Friedenthal and Oster 2017)

Among the many advantages of MBSE using SysML is the ability to capture current,

real-time views into the underlying model to provide a state of the system from any number

of unique viewpoints, each catered to any particular stakeholder. A limitation of SysML,

however, is the language and associated tools are focused almost exclusively on the pre-

operational aspects of systems and therefore have limited utility and are seldom employed

for continual use throughout the operational stages of a system’s life. A deep dive into

SysML can be found in a variety of instructional texts, including SysML Distilled

(Delligatti 2014), and A Practical Guide to SysML (Friedenthal, Moore and Steiner 2014).

SysML has become an enabler for digital representations of complex systems and, based

www.manaraa.com

25

on the stated opportunity to improve the MBSE application for operational aspects of

systems, SysML is extended in Section 3.3 to facilitate continued use in later life cycle

stages.

Leveraging SysML, there are a multitude of MBSE methodologies employed for

performing predefined systems engineering functions throughout system design and

development (Ramos, Ferreira and Barcelo 2012). Common to all of the MBSE

methodologies is the theme of layered decomposition in problem space followed by

coordinated composition in solution space in order to perform the requisite systems

engineering tasks throughout system design, development, and test. A key feature noted by

Delligatti is that MBSE is most valuable when change happens (Delligatti 2014). The

interrelatedness of elements within a descriptive model enables rapid impact identification

and change propagation, two concepts leveraged heavily in Section 3.3 with the proposed

expansion to a model-based system operations construct.

2.2.2.2� Agile Systems Engineering

Based closely on the advancements in the Software Engineering domain and the

development of configurable and extensible tools, Agile Systems Engineering is gaining

attention and attraction. The Harmony method, introduced by Douglass, is an instantiation

of Agile System Engineering using MBSE tools and features to improve the development

of systems (Douglass 2016). Additionally, the term “agile” and associated concepts

continually appear in forward-leaning texts encouraging systems engineers to improve the

design flexibility and the accuracy with which they perform their roles (Dove and LaBarge

2014).

www.manaraa.com

26

2.3� Software Engineering

Software systems can be considered “just another system” in the broader sense of the

definition. The nuance with software systems is the highly configurable nature of software

as compared to hardware. It is based on this feature that software engineering

advancements at times appear to outpace general systems engineering advancements.

Therefore, it is worth a closer look at recent advancements that may positively influence

the way in which systems engineers perform their roles and responsibilities.

2.3.1� Software Engineering - Why Systems Engineers Care

Software engineering is a constantly evolving and closely correlated discipline to

systems engineering, continually advancing methodologies and requisite tools to support

and enable the rapid advancement in software development. According to the Systems

Engineering Body of Knowledge (SEBoK), “software is a flexible and malleable medium

which facilitates iterative analysis, design, construction, verification, and validation to a

greater degree than is usually possible for the purely physical components of a system”

(SEBoK Editorial Board 2020). From this, systems engineering methodologies continue to

be informed of tactics and techniques for advancement based on observed successes.

A recent key example of this is the advent of Agile Systems Engineering noted

previously, based on the successes of Agile Software Development (Douglass 2016). As

stated by Dove and LaBarge, “the growing acceptance and adaptation of agile software

development methods has passed the tipping point in the software world, and is now

motivating expectations in broader domain-independent systems engineering” (Dove and

LaBarge 2014).

www.manaraa.com

27

Therefore, any thorough survey of systems engineering capabilities and advancements

warrants a further look into software engineering practices and processes.

2.3.2� Recent Advancements in Software Engineering

Modularized software development has become mainstream and associated

development methodologies, processes, and tools have adapted. Agile methods were

developed specifically on the basis of modularity and focus on continuous development

(Beedle, et al. 2001). In order to not only continuously identify and develop code but to

quickly deploy it into operational systems, two additional methodological advances were

introduced:

1)� The concept and widespread use of microservices: containerized,

seamlessly interchangeable “black box” modules of code to perform

isolated, singular tasks of an overall system.

2)� The introduction of DevOps: the merger of the development and

operational environments and engineering teams and, more specifically,

the principle of cross-collaboration across both to foster continuous

integration, testing, deployment, and monitoring of these smaller

microservice elements constituting system enhancements or

maintenance patches (Zhu, Bass and Champlin-Scharff 2016).

2.3.2.1� Microservices

The concept of “microservices” was introduced in 2012 as a way to articulate the

architectural concept of many small software programs, each performing a single function,

working together as a whole to perform a more complex function (Lewis 2012), (Lewis

and Fowler 2014). Since that time, the use of microservices has blossomed. Lewis and

www.manaraa.com

28

Fowler broadened the definition of microservices several years later by stating “In short,

the microservice architectural style…is an approach to developing a single application as

a suite of small services, each running in its own process and communicating with

lightweight mechanisms…” (Lewis and Fowler 2014). Building on this over recent years,

the concept of containerizing has grown in usage to describe the modification or creation

of functions into discrete “containers” which can be stacked and leveraged together for

more complex functionality.

“Containerizing” and microservices (or microtasks) are not foreign concepts to system

engineers and can be equated to clearly defining interfaces and functions of any bounded

widget to enable successful late-in-the-flow integration and isolated correction. Driving

containerization down to the smallest feasible level is an area of opportunity for systems

engineering, particularly in operational support elements and products, such as defining

containerized maintenance manual or procedural steps down to singular actions. This

enables reuse of a single element (such as a procedure step) across all executable

occurrences, alleviating the concern of finding and updating all instances of a particular

system command throughout a multitude of maintenance manuals, procedures, and scripts

upon a necessary change.

For a simplistic example, establishing a modularized, elemental representation of

“power down system” allows reuse of this element in any digital, model-based

representation of maintenance manuals requiring power down. If the system is updated for

internal battery power vs. supplied ground power, the change in all maintenance manuals

is captured in a single location and propagated to all relevant procedures/manuals by

pulling content from this single source-of-truth location within an overall system model.

www.manaraa.com

29

2.3.2.2� DevOps

As previously noted, an additional trend in the software domain is the concept and

practice of DevOps. DevOps can be defined as “a set of practices intended to reduce the

time between committing a change to a system and the change being placed into normal

production, while ensuring high quality” (Bass, Weber and Zhu 2015). Olszewska and

Walden apply DevOps to system modeling as a means to couple development, quality

assurance, and IT operations for formal model generation and curation, emphasizing the

larger infrastructure dictated by the DevOps methodology to enable more effective

development, deployment, and operations of software systems (Olszewska and Walden

2015). Combemale and Wimmer introduce a vision of expanding DevOps from pure

software development to managing models of cyber-physical systems throughout the

continuum of development and operations (Combemale and Wimmer 2019). These works

provide a basis for broader systems engineering, and more specifically, MBSE adoption of

DevOps principles beyond software only applications, a primary focus of Section 3.2.

Many of the software engineering methodological advancements provide flexibility

and adaptability throughout the system development and deployment stages, however

DevOps is the first to specifically depict graphically the focus on the operation and

sustainment of software in addition to development and deployment, and perhaps more

importantly, the continued link between development and operations. This can be seen by

a review of broadly accepted life cycle models such as Waterfall, Spiral, Incremental and

Iterative Development (IID), and Agile, covered in more detail in Section 2.4 (Dove and

LaBarge 2014), (Basili and Larman 2003).

www.manaraa.com

30

DevOps promotes closely mirroring the operational software environment within a

development environment, effectively keeping the two in synch. This practice enables

software updates and modifications to be rolled out in small, incremental changes in order

to control impact and vulnerability to change, enabling the concepts of Continuous

Integration and Continuous Deployment. DevOps also institutes a tight reliance on

collaboration between development and operational support personnel, their respective

environments, and the relevant support products (Zhu, Bass and Champlin-Scharff 2016),

(Bass, Weber and Zhu 2015).

2.3.3� Opportunities for Systems Engineering Advancement through Software

Engineering Advancements

The two concepts presented in the prior section, microservices and DevOps, when

leveraged together and stacked on the practice of rigorously defined unit-level testing,

sparked the movement to continuous integration and continuous automated regression

testing, greatly reducing the time-to-operations, and more importantly, the serviceability

of any developments (Balalaie, Heydarnoori and Jamshidi 2016). Regression testing can

be defined as broadly testing system functionality after a change to ensure there is no

“regression” in capability and performance (Kargar and Hanifizade 2018). A key enabler

from DevOps is the intentional synching of environments on regular, short intervals

resulting in high confidence of successful deployments when implementing frequent small

changes versus large overhauls. Merging development and operational environments in

DevOps can be equated in the systems domain to accurately representing and actively

tracking/managing current configurations of the system of interest and, more importantly

in the case presented in this manuscript, the operational support elements required to

www.manaraa.com

31

operate and sustain the system with the ability to establish automated regression testing.

Given the prior adoption of UML into SysML and its use in system modeling and the

implementation of agile methods, a logical advancement towards broader use of MBSE

throughout a system’s life cycle is the application of microservice-like executable building-

block modules and DevOps principles to enable continuous testing, maintenance, and

deployment of operational support product updates during the operational stages of a

system’s life cycle.

The SEDevOps adaptation on the DevOps concept of tightly coupling elements of an

operational system with surrogates in a development environment is detailed

methodologically in Section 3.2 and practically in Section 3.3. SEDevOps enables agility

in the operation of the overall system and provides a proper model for enabling systems

engineers to be agile in their support to operational systems through the use of common

MBSE tools and products throughout the life cycle (Mathieson, Mazzuchi and Sarkani

2020).

Critical to the proper implementation of a model-based digital ecosystem in SEDevOps

is the expansion of the system-of-interest boundaries to include operational support

elements and products (command procedures, maintenance manuals, scripts, etc.) in the

core system model, described in more detail in Section 3.3. Based on the current

implementation of MBSE and use of SysML v1.6, these operational support elements are

not traditionally incorporated within the boundaries of a system-of-interest descriptive

model. The distinction in SEDevOps is the additional focus on the operational stages of

the life cycle as part of the overarching model-based life cycle. Therefore, the ability to

www.manaraa.com

32

permanently incorporate the operational support products into the overall “system” and the

representative model is a critical enabler.

2.4� System Life Cycles

With the discussion on systems engineering and MBSE fundamentals as well as

software engineering advancements on those fundamentals presented, it is now valuable to

review in more detail a variety of widely accepted and practiced system life cycle models.

2.4.1� Life Cycle Definition

A system life cycle can be defined as “a view of a system or proposed system that

addresses all phases of its existence to include system conception, design and development,

production and/or construction, distribution, operation, maintenance and support,

retirement, phase-out and disposal” (Blanchard and Fabrycky 2006). Figure 2 depicts a

generic system life cycle from Blanchard & Blyer’s Systems Engineering Management text

(Blanchard and Blyer 2016).

Figure 2 - Generic System Life Cycle (Blanchard and Blyer 2016).

INCOSE defines the key phases, or stages, of a system life cycle as Concept,

Development, Production, Utilization, Support, and Retirement, Figure 3, and further

defines Systems Engineering as a full life cycle discipline, stating “the role of the systems

www.manaraa.com

33

engineer encompasses the entire life cycle for the SOI [System of Interest]” (INCOSE

2015). In addition, INCOSE and ISO/IEC/IEEE Standard 24765 (ISO 2017) have defined

specific roles and responsibilities of systems engineers in each of these life cycle stages.

The following section reviews in more detail various life cycle models and the methods for

addressing relevant stages in each.

Figure 3 - INCOSE Generic System Life Cycle Stages (adapted from INCOSE 2015).

System life cycle stages can be implemented in a variety of ways incorporating strict

sequential plans, iterative and incremental blocks, or frequent function-based releases.

Many life cycle models therefore exist to facilitate architecting and executing specific

aspects of a system’s life. These include the Vee, Waterfall, Spiral, and Agile, among

others. Table 1 describes a variety of widely recognized life cycle methods employed in

part or in whole in systems engineering applications (Dove and LaBarge 2014), (Douglass

2016), (ISO 2015), (INCOSE 2015), (SEBoK Editorial Board 2020), (Basili and Larman

2003). Proposed strengths and shortcomings with respect to systems engineering

applications are incorporated in the table and described in further detail in the subsections

to follow. The life cycle models identified in this table are leveraged in Section 3.2 to

develop a representative life cycle model for MBSE implementation throughout the life of

a system.

�������

	�
��������

��������� �����������

�������

����������

www.manaraa.com

34

Table 1 - Life Cycle Model Comparison

�������	
��
����
���

�������
���� �������
����� �����
��� �����	����
�

���
��������		��������
�������

������ !��
"!������
�#$%��

&�'(!$���)��
*#$!#+!�!��

��'(�)�!#����
,�#)��$!-�)
�,$��
���.!/!�3	

4#��$/#��

6 &!:�$�(������$(.�($�3���#)
6
!:;��$�3!.�#+!�!������#+!�!����
$���#�#+!�!��

6
!:;���-�����/�#��($#).���(!�#+���/�$�
�#/����.$!�!.#���������

6 *#$!#+!�!����������!:)!/!.#)��
.;#���):���#)3�.#)�+#����)�.����

6 �)/$�'(�)����#$:��:#���$�-!�<�

!:;
�<
�<

*��

6 �);�$�)��$�.($�!�)�#)3��#��$�3�
3�.�����!�!�)��/����.!/!.#�!�)

6 ��)�!)(�(��!)��$�.����-#�!3#�!�)�
�)#+�����#$:���.#����.����� ��������
3�-������)�

6 ��)�!)(�(��$!�%�����$�()!���
#�������)�

6
!�!��3�#:!�!���#)3�#3#��#+!�!������
.;#):�

6 "��!.#�����!):�����#$:��3��!-�$�
6 �)/$�'(�)����#$:��:#���$�-!�<�

!:;
�<
�<

�-��(�!�)#$��
����).($$�)�
����$#�!-�	

���

��!$#�

6 �#$���!)!�!#��.#�#+!�!���3��!-�$�
6 ���$#�!-��3�-������)��#)3�
3�������)���)#+����!).$���)�#��
3��!-�$���)���$��/$�'(�)��.�)��$�

6 ��$��/$�'(�)��:#���$�-!�<�

6 &!�%��/�!)��#+!�!���3(�����.;#):!):�
$�'(!$���)��

6 �������)���/(����.#�#+���()�!��
!).$���)�#��3��!-�$!���#$��.�������

6 �-��(�!�)��/���������#���#%��
!)!�!#��.#�#+!�!�!����+������

6 �;#���):���<!�;��#$:���.����� �
�������

��3 ��3 ��3

�)��$��$��)#��
�����$:�)�

�:!��

6 ��.(���)�.���#+�$#�!-��3�-������)��
#)3�.�)�!)(�(��#3#��#�!�)

6 ��#$�.�)�!)(#���)$#����/�$�(�3#����
#)3���3!/!.#�!�)��<!�;�.�)��#)��
/��3+#.%

6 ="!�������#$%��>��/�/�#�($��

6 ,�$.���!�)��/�()��$(.�($�3�
#��$�#.;

6 ,���)�!#��/�$�!).�)�!���)����#���!�3�
�$�.���

6 �������)�#�!�)�.;#���):���/�$�
.����� ��������

�<
!:;
!:;

��-���

6 ��.(���)�.���#+�$#�!�)�#.$����
3�-������)��#)3����$#�!�)����#��

6 ������)�����.�)�!)(�(��!)��:$#�!�)��
.�)�!)(�(��������.�)�!)(�(��
3�������)�

6 ?)/�$�#�!@�3����;�3���:��<!�;�
-#$�!):�!)��$�$��#�!�)��#)3�
#���!.#�!�)�

6 ��)�$#������.#�!@�3�/�.(��$#�;�$�
�;#)�:��+#��/�.(�

�<
!:;
!:;

www.manaraa.com

35

2.4.2� Sequential & Plan-Driven Life Cycle Models

Traditional system development follows a logical, sequential flow in which successive

development tasks are performed following completion of prior tasks. The long employed

Waterfall model represents the linear flow of completed data and material from one stage

to the next. In this model, the development plans are rigorously structured and therefore

highly predictable, stable, and repeatable. This becomes a favorable attribute when

developing and testing safety critical systems in which variability can pose dynamic and

unpredictable impacts. Challenges that arise with a rigid approach of this nature include

limited ability to support requirement variability and added scope after initial planning.

Systems employing this approach are generally highly complex and potentially system of

system implementations requiring well vetted interfaces and bounded constituent

capabilities (SEBoK Editorial Board 2020), (INCOSE 2015).

A closely related model developed out of the Waterfall model is the Vee. In this model,

decomposition, definition, design, and development occur on the descending left leg of the

Vee while integration, test, verification, and validation occur on the ascending right leg.

Of note in this model is the correlation of the level of decomposition on the descending leg

with the level of integration and test on the ascending leg. In other words, the first step of

integration and associated test is at the lowest level, corresponding to the lowest

decomposition of design and development. As the program builds/integrates from

individual units out to the system level, the requirements verified at each level match the

decomposition done on the descending leg. In this way, the Vee is a very logical, sequential

implementation with correlation between earlier stages and later stages of development.

Figure 4 depicts a traditional Vee model found in numerous sources, including the INCOSE

www.manaraa.com

36

Systems Engineering Handbook, adapted by Douglass and modified further for

incorporation herein to represent the interrelation to and data sharing with products from

earlier stages (for integration, verification, and validation) (INCOSE 2015), (Douglass

2016).

Figure 4 - Vee Life Cycle Model (adapted from Douglass 2016)

Similar to the traditional Waterfall method, the Vee tends to be structured and pre-

defined. Advantages include the inherent recursion between levels of decomposition and

specification as well as the potential for early validation, at the lowest level of

decomposition and subsequent integration. This facilitates continuous risk and opportunity

assessment at all levels, supporting complex system development. Due to the pre-planning

generally employed with the Vee method, agility and adaptability to change are limited

and likely result in broader impacts (SEBoK Editorial Board 2020).

Common to both the Waterfall and Vee are gate reviews and deliveries. For complex

systems requiring many parts for initial functionality, this may be an advantage. Otherwise,

www.manaraa.com

37

for incremental and dynamic systems, methods from the evolutionary & concurrent

category may provide better suitability.

2.4.3� Evolutionary & Concurrent Life Cycle Models

Software systems have pushed methodologies towards incremental development and

deployment in which capability is developed to an initial, minimum functionality and

deployed while more complex functionality is then developed, tested, and ultimately

deployed on top of the prior increment(s). In this category of life cycle methodologies,

functionality is strategically built in phases, typically with gated milestones associated with

each discrete installment of complexity to validate foundational functionality before

progressing.

 IID builds on the Waterfall and Vee methods and can employ these within a

development increment for the purposes of structured planning and verification (Basili and

Larman 2003). In the IID method, multiple increments can be developed simultaneously

leveraging a common baseline or trunk. Figure 5 provides a visual of the IID process

(Forsberg, Mooz and Cotterman 2005).

www.manaraa.com

38

Figure 5 - Iterative and Incremental Development Life Cycle Model (Forsberg, Mooz and
Cotterman 2005)

The Spiral model, on the other hand, typically focuses on more discrete transitions from

one iteration to the next as building blocks (B. W. Boehm 1988) and can therefore be

employed more readily on cyber-physical systems in which functionality can build over

time. An example of this is the U.S. Space Development Agency’s acquisition of space-

based capabilities in spirals, or “tranches” where each successive tranche builds on the

capability of the prior (Space Development Agency 26 June 2020). Figure 6 provides a

modified graphic of a single iteration in a spiral life cycle (Douglass 2016).

www.manaraa.com

39

Figure 6 - Spiral Life Cycle Model (adapted from Douglass 2016)

IID and Spiral enable early delivery of capability with incremental updates on more

frequent centers than traditional Waterfall and Vee implementations. In addition, more

frequent deliveries generally result in more frequent, smaller gate reviews. A byproduct of

the shorter cycles and frequent reviews is the potential for added variability and instability

due to shifting focus and requirements. In terms of completed capability and functionality,

a shortcoming in these methods is the system is generally not fully capable until all

deliveries are complete resulting in potential challenges with obsolescence before

completion. Overall, evolutionary and concurrent models tend to be best suited for systems

of medium complexity, schedule need, and variability (SEBoK Editorial Board 2020).

While Iterative and Incremental Development and Spiral life cycle models provide a

means to revisit prior life cycle stages, they typically do so as a predefined logical plan to

incrementally introduce new capabilities rather than to focus on adaptation or maintenance

www.manaraa.com

40

of existing capabilities during the post-deployment operational life of a system (Douglass

2016).

2.4.4� Interpersonal & Emergent Life Cycle Models

The third category of life cycle models introduced by SEBoK is Interpersonal and

Emergent (SEBoK Editorial Board 2020). As presented by SEBoK, this is focused

primarily on the Agile model however, as introduced in Section 2.3.2.2, DevOps has many

similar characteristics and is proposed here as an extension to this category.

Agile, discussed briefly in both the systems engineering and software engineering

literature reviews, is structured to “adapt” to evolving stakeholder needs through continual

assessment of highest priorities in short, repetitive development cycles, called “sprints”.

This, in practice, is less of an iterative and more of a rolling process, resulting in a focus

on quick turn priorities typically driven by stakeholders more so than developers. Agile

incorporates more than basic process methodology and, as articulated in the Agile

Manifesto, is a mindset and conscious prioritization of continual forward progress and

working functionality over comprehensive completion before release (Beedle, et al. 2001).

Figure 7 depicts a representation of an Agile process flow (Boehm and Turner 2004).

www.manaraa.com

41

Figure 7 - Agile Methodology (Boehm and Turner 2004)

Agile focuses on continuous adaptation to changing customer/stakeholder priorities

and therefore is receptive to variability in requirements and needs. Additionally, the

methodology and process emphasize collaboration which further improves time to market

for capabilities. A result of the limited planning and structure in Agile is the potential for

unstructured approaches to system architecture and inconsistency throughout the

development process. Similar to the previously presented life cycle methods, Agile is also

focused on product delivery and does not explicitly incorporate elements of post

deployment system management into the core tenets of the life cycle model.

DevOps is a model recently gaining traction and broader application in the software

domain and was discussed in more detail previously, in Section 2.3.2.2. From a life cycle

model standpoint, it combines the flexibility and adaptability of Agile development with a

deliberate and continuous path from operations back into development, promoting

www.manaraa.com

42

continual maintenance and evolution. Figure 8 provides a view of DevOps as a cyclic

feature generation process (Compuware 2019).

Figure 8 - Representative DevOps Life Cycle Process (Compuware 2019)

DevOps emphasizes collaboration not just among development teams but more

importantly across development and operations/sustainment teams to enable continuous

integration, test, deployment, and monitoring (Riungu-Kalliosaari, et al. 2016). An area for

potential improvement with respect to DevOps is the consistent application across broader

system instantiations. Due to the localized focus on maturing, deploying, and monitoring

system features on the feature scale rather than system scale (typically in containerized

microservices), there is the potential of local optimum solutions rather than global optimum

solutions. Based on this, broad applicability to highly complex cyber-physical systems is

still in question.

Of the life cycle models discussed herein and presented in Table 1, DevOps is the first

to visually integrate aspects of operations, monitoring, and maintenance into the life cycle

model depiction and is the one currently not yet formalized in model-based systems

www.manaraa.com

43

engineering practices. Section 3.2 explores an adaptation on DevOps for systems

engineering applications and more specifically for MBSE application throughout a

system’s life cycle.

2.5� Digital Engineering

2.5.1� Definition of Digital Engineering

Digital Engineering, as defined in the taxonomy in Section 1.1, is enabled by “the

creation of computer readable models to represent all aspects of the system and to support

all the activities for the design, development, manufacture, and operation of the system

throughout its life cycle” (SEBoK Editorial Board 2020). Therefore, Digital Engineering

relies on the conversion of systems, subsystems, functions, behaviors, interfaces,

documentation, etc. into fully digital representations capable of interrelation at the

metadata level. Another way to look at it is that Digital Engineering is organized and

formatted data hosted in a common and accessible repository or computing system.

A sub-discipline of Digital Engineering is model-based engineering (MBE) which

extends formalism of system or discipline specific modeling techniques to the data. As

defined by the NDIA MBE Subcommittee and further articulated by the US DoD MBE

Infusion Task Team, “Model-Based Engineering is an approach to engineering that uses

models as an integral part of the technical baseline, including the requirements, analysis,

design, implementations, and verification of a capability, system, and/or product

throughout the acquisition life cycle” (NDIA Systems Engineering Division M&S

Committee 2011) (Puchek, et al. 2017).

Within MBE, MBSE is a further sub-discipline focused on modeling and more

importantly digitally linking the tasks, processes, and artifacts of systems engineers.

www.manaraa.com

44

Friedenthal, Moore, & Steiner define MBSE as “the formalized application of modeling to

support systems requirements, design, analysis, verification, and validation activities

beginning in the conceptual design phase and continuing throughout the development and

later life cycle phases” (Friedenthal, Moore and Steiner 2014).

Digital Engineering, MBE, and MBSE are in the early stages and evolving rapidly, as

are the tools to instantiate and maintain system models. This can be seen in the focus and

attention given to digital and model-based engineering in current visionary and strategic

documents (INCOSE 2014), (U.S. Department of Defense 2018). Looking forward, it is

then logical to trend towards fully digital representations of systems in the form of models

as an enabler for establishing and managing inter-relations of system elements from womb

to tomb (including procedures, scripts, maintenance manuals, etc.), as introduced in

Section 3.3.

As a point of note, the first purpose of modeling has been identified as characterizing

an existing system to facilitate maintenance, including support for training, knowledge

capture, and system design evolution, all of which are critical aspects of sustaining and

evolving operational systems (INCOSE 2015). Despite the attention across the community,

the existing MBSE tools tend to focus on products and processes in line with early life

cycle stage definitions, roles, and responsibilities (Friedenthal, Moore and Steiner 2014),

(Delligatti 2014), presenting an opportunity for evolution into the operational stages of

system life cycles.

2.5.2� Recent Developments in Digital Engineering

Work towards a digital transformation of systems engineering has been ongoing for

some time. There is significant literature available describing novel applications of Digital

www.manaraa.com

45

Engineering and model-based practices to all stages of system development and operations,

including, among other topics:

1)� The design of system operations (Gans 2017), (Uhlemann, et al. 2017)

2)� Prognostics & health management applications (Sutharssan, et al. 2015),

(Codetta-Raiteri and Portinale 2015)

3)� Fault management design and test to create resilient systems (Castet, Bareh, et

al. 2016), (Castet, Bareh, et al. 2018), (Wagner, et al. 2012), (Rabelo and Clark

2015)

4)� Documenting and tracking Maintenance (Crane, et al. 2017)

5)� The development and maintenance of digital twins to accurately track system

status over the life cycle (General Electric Corporation 2018)

Common to many of these topics is the use of MBSE methodologies and descriptive

models to represent and support the design and development of the system in preparation

for system operations, however applications of active use of descriptive models leveraging

SysML during operations presents an opportunity for advancement.

2.6� Cross-Cutting Topics

Digitally representing systems and constituent elements in descriptive, interrelated, and

executable models creates a plethora of opportunities to fully leverage the models for

advancing systems engineering applications. The following two subsections are two

specific examples where research is being performed with a potential for positive impacts

to system development and, as proposed herein, to system operations and sustainment.

www.manaraa.com

46

2.6.1� Formal Methods

Formal methods can be defined as “mathematic/logic methods to specify, develop, and

verify systems” and are used to “…evaluate the compliance of a system specification to a

set of constraints defining correctness properties” (Madni and Sievers 2018). Toure, et al

propose representing software systems through domain specific modeling languages to

enable the use of axiomatic semantics for pre- and post- condition verification (Toure, et

al. 2017). The concept of axiomatic semantics is a subtype of formal methods focusing on

discrete pre- and post- conditions, or states, surrounding a discrete task, function, or action.

As will be described in Section 3.3.5, applying this approach more broadly beyond

software systems to cyber-physical systems establishes a means to validate system

configuration pre- and post- actions (i.e. a constraint check prior to execution of a

procedural step and successful outcome following a step).

The concept and application of Petri Nets is a form of axiomatic semantics. As

articulated by Huang et al (Huang, McGinnis and Mitchell 2019) and Graves & Bijan,

(Graves and Bijan 2011), DevOps and microservice-like behavior models in SysML each

individually enable a format, such as Petri Nets, for formal verification of system

operations support products within an executable modeling environment. Graves & Bijan

state that “formal methods have the potential for determining information consistency and

change impact” (Graves and Bijan 2011), which are both key elements to agility and

adaptability during operations and sustainment stages.

The use of formal verification of descriptive modeling artifacts is fairly recent and

leaves room for further expansion. This is addressed briefly in a discussion on future

research opportunities in Section 5.3.1.

www.manaraa.com

47

2.6.2� Safety Critical Systems

Building on the application of DevOps principles with formal methods of verification

establishes the necessary framework to support safety critical system design and operation,

as articulated by Olszewska and Walden (Olszewska and Walden 2015). Research is

underway to expand on the usage of MBSE and SysML for developing and verifying safety

critical systems and is discussed briefly in Section 5.3.1 as a next step to build on the

concepts introduced in the following chapter.

2.7� Bringing It All Together – Summarizing the State of the Art with a Call to Action

As noted at the start of the literature exploration, the more recent systems engineering

methodologies are driving towards the use of integrated digital and model-centric tools to

structure and manage systems engineering tasks and products. However, they are generally

focused on and optimized for the first “half” of systems’ life cycles and rarely leveraged

beyond system deployment (Douglass 2016), (Delligatti 2014), (Friedenthal, Moore and

Steiner 2014). The INCOSE Systems Engineering Vision 2025 identifies formalizing

systems engineering and, more specifically MBSE, for later life cycle stages and the U.S.

DoD Digital Engineering Strategy calls out a need to evolve digital and model-based tools

to improve agility, adaptability, and overall scalability to more complex systems (INCOSE

2014), (U.S. Department of Defense 2018). Madni and Sievers identify the many benefits

of “living” system models, as well as the current shortcomings in modeling tools, and go

on to articulate the need for advancements and evolution in the MBSE methodology,

processes, and tools, stating: “MBSE methods must cover the full system life cycle.

Extending MBSE methods will require both methodological advances and development of

supporting processes and tools” (Madni and Sievers 2018). While the systems engineering

www.manaraa.com

48

discipline is still considered immature in its widespread use of models, it is expected in the

next decade that MBSE will play an increasing role in the practice of systems engineering,

particularly based on the growing interdependency of software within systems engineering

(Ramos, Ferreira and Barcelo 2012). Along those lines, Dove and LaBarge recognize the

need for an agile systems engineering life cycle model, introduce the start to one, and

identify an opportunity to better build this model into a workable methodology (Dove and

LaBarge 2014).

Based on the broadly acknowledged applicability of systems engineering to all life

cycle stages, the identified opportunities for improvement to systems engineering focus

and agility, and the needed improvement to digital and model-based systems engineering

tools for later life cycle stages, a modified systems life cycle model is introduced in Section

3.2 and an extension to toolchains to support this model is addressed in Section 3.3.

www.manaraa.com

49

Chapter 3:� Research Methods, Resulting Life Cycle Methodology & Framework

3.1� Research Methodology Overview

Before embarking on a detailed discussion on the concepts introduced by this research,

the methods employed to develop the new material, and the specific contributions this

research brings, a brief dialogue on the Inventor’s Paradox is useful. This will help frame

the path chosen in this research based on the initial question proposed at the onset of

Chapter 2 for codifying system operations products and systems engineering support

during system operations into a descriptive modeling environment to improve agility and

ultimately enable autonomicity.

3.1.1� The Inventor’s Paradox

As introduced by George Polya in How to Solve It, the inventor’s paradox implies that

in order to solve what one sets out to do, one may have to solve additional problems along

the way (Polya 1945), (Ruan, et al. 2010). The initial intent of this research focused on

improving model-based applications of system engineering during system operations in

order to harvest the advantages seen to date in MBSE applications. What was quickly found

and articulated through the literature review throughout Chapter 2 is that MBSE is rarely

applied during the operational stages of a system’s life cycle. Therefore, to leverage a

model-based support structure for operational systems, a larger problem must first be

solved: a life cycle model and associated tools must be created to foster the use of MBSE

into and throughout the operational stages.

The concepts introduced throughout this chapter provide a normalization for MBSE

support throughout the life cycle to enable, as this manuscript’s title implies, a step towards

polymorphic systems engineering. This is introduced as a modified life cycle model and is

www.manaraa.com

50

followed by a descriptive modeling framework to normalize the interface of MBSE

information and products throughout the life cycle.

3.1.2� Architecture, Methodology, Framework Development

The methodology applied to expanding MBSE applications to system operations is in

the general architecture development category. Therefore, the problem-solving approach

converts heuristics into a more qualitative and foundational product rather than a

quantitative and exact scientific application. The result is a modified life cycle model to

aid and guide systems engineering support, through the application of MBSE, throughout

the life of any system. The modified life cycle model is a graphical representation of critical

stages of any system (consistent with the generic life cycle model introduced in Section

2.4.1) with a focus on the relationship of one stage to another and an emphasis on key

enablers for each transition. As will be noted in detail in this chapter, the focus most notably

adds direction for MBSE application and use into and during system operations and

sustainment.

The second application of research methodology and problem solving is in the

development of a more detailed descriptive modeling framework to support instantiating

this modified life cycle model. This too falls into an architecture development category

with a resultant visual representation of the meta-model, i.e. the inherent interrelation of

newly created descriptive model elements, imbedded in the modeling framework.

3.1.3� Methodology Map

Figure 9 provides an overview of the research methodology employed. There are three

major elements in this process, identified by the three numbered circles. Each element

builds on the prior, resulting in a simulation environment (3) in which to perform a use

www.manaraa.com

51

case to determine the utility of the newly introduced life cycle model (1) using the

descriptive modeling framework (2). The chapters in this manuscript in which the material

in the methodology map in Figure 9 is covered is noted by the color coding of each block,

identified in the legend.

Figure 9 - Research Methodology Map

Based on this, it is now possible to build on the literature review performed throughout

Chapter 2 towards a solution for the problem statement introduced in Section 1.2.

3.2� Introducing the Systems Engineering DevOps Lemniscate

3.2.1� Putting It Together into SEDevOps

As noted throughout the literature review, evolving the use of MBSE beyond system

deployment is an area of opportunity to improve agility and reduce costs during the

����������	
��
��������
�

������	��
��
	
�
��
�	�
��	��
�������
��	�������
���
	�A�����	�����	�

���������������	�	�����	�����
�����
�����
���	��
������

����������
����	��
��
�
������
���
	����	��
������	
��
��

�������
����� ������
��
	��
 �	

!���
���"#����
$%���&� �
�
!������
����
��
	��
 �	�

&��	��
'((�
����	����
�
��
	�

&���	#��)�!	�	����	�
*�
�����$�����	

!	�	�����������
	������
&��	��
'((�����	����

���� �
�������
��
������

+�����	
	�,

!�	��
������ ����
�	��	�	�
�
�		
��

����*��(-!�"	�
�
���� �
�������

	�	�	�
���
	���
�����
+���������B	
�,

!�	�������
�
��
�
��

��	��
������
�����	��

��
�����	���
$�����	���"����

�	
��
�����	���
��	��
������-�
�

.��
(
	��
��	�

�	
���
	��
/	���	�	�
�

�����$�����	�0�
�	
��
�����

1�
B��
����� &��	

.��
�	
���
	��

(�����	�	�
�

2	�	��
	�
.�
����������

� ����
�
��	�	�
�

���
	���
�����		�����
��
	��
 �	

���
#��	�
�����		�����
��
	��
 �	

2	�	�������	�����	�
��
�����
���*���!	����

���	����	�
��
	����

!	����
������
$���	��	�

�	
��
�����	�
"����

!	����

���� �
	�
�������
�������
��!	����

!�	��
��!	����
	����	�
��������
����

����
�	��	�	�������	�����	�
��
	���	�	3���
	
�
�������
	�

����� �	�
 ��������
	��
��	��
�����0�� �
����	�
�

� � �

!�
��
�� ��	 �	
��
����� -������� !	������ /	�	�����

4 	�
��������	 ��1�5 ��1�6 ��1�7

.��
/	���	
��
	�

8	�
8	�

8	�

.��
(
	��
��	�

�	
���
	��
/	���	�	�
�

8	�

.��
/	���	
��
	�

8	�

������
���
"	�	�	
����

$���	
 �	���	
�1

%���
�	���*
8	�

www.manaraa.com

52

operational stages of a system’s life cycle. This opportunity comes about in part due to the

limited definition of descriptive modeling elements and specifics on modeling

methodology beyond deployment and, furthermore, the limited continuation of MBSE

models from the development stages to the operational stages. To support and promote the

opportunity for greater MBSE utilization throughout a system life cycle, the SEDevOps

Lemniscate, introduced in Figure 10, was created.

Figure 10 - The SEDevOps Life Cycle Model

Based on the successes seen in DevOps implementations in the software domain, the

SEDevOps Lemniscate starts with the lemniscate shape from DevOps models and overlays

the more traditional system life cycle stages across the lemniscate as compared to the

software-centric stages seen in DevOps models, and example of which is depicted

previously in Figure 8. A key element of DevOps is the underlying common toolchain that

facilitates continuity of data and products throughout all life cycle stages. SEDevOps is

built to leverage MBSE tools and modeling languages as this common toolchain

throughout the life cycle, articulated in more detail in Section 3.3. With the underlying

�����������	

������������
��	�
����
�

�����

��
��
���

���

�������������
��������
�

www.manaraa.com

53

application of MBSE in mind, the SEDevOps life cycle model is a merger of key life cycle

stages from traditional systems engineering life cycle models, described in Sections 2.4.2

and 2.4.3, along with features derived from more recent emergent life cycle models

overlaid on a DevOps continuum or lemniscate extracted from several recent variants of

DevOps models. Figure 11 depicts the source of features from the life cycle categories

described in Table 1 on the SEDevOps lemniscate.

Figure 11 - Feature Sources in the SEDevOps Life Cycle Model

Existing MBSE methodologies and tools address the traditional systems engineering

life cycle stages of Concept, Design, Develop, Integrate, and Test and therefore these stages

were sourced from the generic life cycle models described in Section 2.4.1. The agile

feature of promoting multiple design and deployment cycles was derived from agile

systems engineering models presented by Dove & LaBarge (Dove and LaBarge 2014), and

Douglass (Douglass 2016) which differs from traditional DevOps by introducing a branch

from Test back to Conceive to support subsequent cycles in parallel to Operations. Finally,

the DevOps base lemniscate, which represent the continuum of capability creation,

integration, verification, deployment, monitoring, and improvement, was adapted from a

SEQUENTIAL &
PLAN DRIVEN

EVOLUTIONARY
& CONCURRENT

INTERPERSONAL
& EMERGENT

L

www.manaraa.com

54

variety of DevOps life cycle models currently in use in the software domain (Combemale

and Wimmer 2019), (Compuware 2019), (Atlassian 2019).

3.2.2� Description of Parts from Existing Life Cycle Models

The SEDevOps life cycle model embodies the symbiotic relationship between system

development activities and system operations and sustainment activities. SEDevOps is

designed to specifically encompass the development and management of descriptive

models not only of the core system of interest, but also the necessary operational support

elements within the boundary of the overall system and, more importantly, incorporated as

part of the requisite MBSE model and continuously managed and tested throughout the life

cycle, a concept depicted notionally in Figure 12. This ensures the complete system and

the necessary support elements to operate and sustain the system are properly accounted

for in modeling space, continuously addressed, and accurately maintained. MBSO,

introduced later in this chapter, provides an approach to incorporate these operational

support elements into the broader descriptive system model.

Figure 12 - Notional Expansion of System Boundaries in SEDevOps

www.manaraa.com

55

In the SEDevOps life cycle model, system development progresses through the

conventional sequential, plan-driven stages on the left in Figure 10, starting with Conceive

then Design (grouped together as system Specification), Develop then Produce (grouped

together as system Development), and Integrate then Test (grouped together as system

Verification & Validation). These development stages are characteristic of a methodical

systems engineering approach to system development, as derived from the sequential, plan-

driven methods presented in Table 1 and discussed in Section 2.4.2. MBSE, as broadly

implemented to date, contains the relevant modeling elements and prespecified

interrelationships to support the product and content development throughout these stages

(Friedenthal, Moore and Steiner 2014).

Upon successful completion of Test within Verification & Validation, the system is

deployed to an operational environment at which time “Operate” is the primary focus.

Concurrently, SEDevOps promotes iterative and evolutionary development, particularly

with respect to MBSE model curation and use, with a directed branch back into system

development at this point, as derived from both IID and Spiral methods discussed in

Section 2.4.3. In order to continue operations through system aging, changing

environmental influences, and failure scenarios, system maintenance, sustainment, and

improvement is required. These stages are not new to systems engineering as a discipline.

However, the continued use of MBSE descriptive models throughout the operational stages

as the common and collaborative toolchain, akin to DevOps collaboration tools for

software development and maintenance, is where SEDevOps provides a new emphasis.

Throughout system sustainment, near-continual regression and diagnostics testing is

critical for ensuring the continued accuracy and completeness of all necessary operational

www.manaraa.com

56

support elements (i.e. ensuring procedures and scripts are accurate for the current system

configuration and environmental conditions, they represent the proper transition from

primary to redundant equipment if a failure occurs, etc.). The right side of the SEDevOps

lemniscate in Figure 10 introduces the divergence from the traditional systems engineering

life cycle models of Table 1 and incorporates the DevOps concept of a directed path back

to system development from the system operations stages, as scenarios warrant during

system sustainment.

As described in Section 3.2.1, the merger of features from each of the life cycle models

noted in Table 1 into the SEDevOps model brings a number of strengths from each life

cycle category together, resulting in a combination of the strengths, enabling not only

rigorous development structure but also adaptability in both development and operations.

Table 2 provides an addendum to Table 1 describing the relevant characteristics of

SEDevOps, including strengths and potential shortcomings.

Table 2 - SEDevOps Characteristics

�������	
��
����
���

�������
���� �������
����� �����
��� �����	����
�

���
��������		��������
�������

�	�
���
��
�
����	�
������

����
���
��
�
��

�	����
��
�����
�	��
��	��

������
�

 ������������������������
���
�����	
������

�	�!"

 ��

	����
�"��������!���
	������
!�!�
!������	
�����!	�����!���

�!���
�#�
�!���������!�
��
�
���
���
����

 ��
����	
����
	����$!���$	���%��
 ��������������
"��
&���
!	��
��	������
���
	������
��#����
	������
�#

 '����!	��
�����	����
��$	��
�
�����������	�
$
!��
	���(
�"�
!	�������$�����!�

)	!���	��!	����	���
	���!�	���
�����	
���������	
����
	���
�����

 �������
����
�
�!��
����
$
!��
	��
�����
�
#��
	��
��	
����
	��

 *�	�
����
���
��
!�!	�$
#����
	��
����#������
���	�����
�!�

 *�	�
������!	��	���		�!"�
������
�����
����$�!���"�	�#"	����
$��!�!��

 ����
�����
#	�	���
�	��������#�����

 *	����
�����!	�
����

�$������!������	�
��

	����	����
�����	
���������
����#�����

 *	����
�����	
�
	��
!"�����#����
�!���
�#�
������������
�
�#�����

�$������!����

 ���
#�����	�
�
���
���
��

	����	$�(����
������	
����
	����
��

	�����������
��
��������
	���
��
�	���
�#��
�!�+�
*	����
���!"�����#���
���
�
�#��	�"���(����
����#�����

,
#" ��� ,
#"Test

www.manaraa.com

57

Additionally, the fork in the life cycle flow between the Test stage and the Operate

stage as well as between Sustain and Operate promotes the concept of MBSE support

occurring and continuing simultaneously in different stages. Development of

enhancements and system fixes in MBSE model-space is encouraged to occur in parallel

to continued system operations and maintenance of operational support products within a

common model-space. Definition of multi-faceted and simultaneous systems engineering

support through this form of MBSE application is a first step towards a polymorphic

discipline.

3.2.3� Focus on Test to Enable Continuous Integration, Test, & Deployment

An advancement that SEDevOps brings is the visual emphasis on “Test” residing in

the middle of the graphic with all paths, apart from Decommission, passing through this

stage. This stresses the importance of not only testing prior to deployment of any system

element or operational support element upgrade, but more importantly near-continual

validation and regression testing throughout operations and sustainment. As a noted focus

of SEDevOps is on the model-based support structure of MBSE throughout the life cycle,

this focus on Testing is an inherent feature in many MBSE toolchains and therefore can be

implemented seamlessly within model-space in order to provide continuous regression

testing on existing modeled elements as well as validation testing as configurations change

over the life of a system. Testing has long been identified as a critical activity prior to

deployment in the systems engineering process and is represented as such in existing

systems engineering process definition (INCOSE 2015) as well as in MBSE modeling

language and tool composition (Friedenthal, Moore and Steiner 2014). It is equally as

critical as systems age and operational environments evolve over time to ensure the system

www.manaraa.com

58

continues to be operated successfully and the operational support elements (procedures,

scripts, databases, etc.) are continually tested for accuracy and completeness in response to

system and environment evolution.

An example of a simplified operational support element (i.e. procedure) modification,

test, and redeployment case during the Operate stage is the response to a hardware unit

failure in an operational system. In this scenario, the physical system is configured, as

designed, to a back-up unit with reduced capability requiring operational procedure updates

based on the reduction in performance, followed by testing of these procedural updates and

finally release of the updates to properly poise the system and the support team for the

change in functionality and capability. The focus in this scenario is on the operational

support products which, as proposed with SEDevOps, exist in the MBSE model space. The

modeling framework to host and manage operational procedures in MBSE models is

proposed and described in detail in Section 3.3. This scenario exercises the right-side of

the SEDevOps lemniscate in Figure 10.

An alternate and more complex scenario could entail transitioning an operational

software system from a bare-metal, rack-mounted server architecture to a cloud-enabled,

containerized, virtual architecture. In a case such as this, it requires a full, formal

redevelopment cycle in which significant aspects of the system are redesigned,

redeveloped, reintegrated, reverified, and redeployed. This example is a more involved

case in which the system adapts to advancements in infrastructure capability and evolves

its architecture to improve performance and maintain relevancy. Similar to the scenario

above, the focus in describing this scenario here is to articulate the ability for the MBSE

tools supporting SEDevOps to handle revisiting core elements of the system’s descriptive

www.manaraa.com

59

model to rearchitect and follow the existing and previously employed systems engineering

(and MBSE) processes to redeploy the updated and evolved system. This represents

traversing the entirety of the SEDevOps lemniscate in Figure 10.

In each of these cases, the resulting actions pass through the Test stage as a gate before

returning to the Operate stage, emphasizing the continuous testing needs during system

operations to prepare for further modifications, adaptations, and evolutions, as needed. As

noted earlier with the focus of SEDevOps on MBSE applications across the life cycle,

implementing adequately detailed system models allows for automating the continued

validation and regression testing of operational support products to ensure compatibility

and proper management of system configurations. This is discussed in Section 3.3 with an

implementation leveraging SysML.

3.2.4� Addressing Decommissioning

Ultimately, the operational stage results in a need to decommission the system,

represented by the off-ramp on the far right of the SEDevOps lemniscate in Figure 10.

Decommissioning is a topic considered briefly during system development when driven by

requirements. For example, space systems in low-earth orbits have requirements levied

upon them to deorbit within some period of time following mission completion or certain

failure criteria dictating a necessary deorbit. In other words, the systems must be removed

from the operational environment and, in doing so, have to abide by strict safety

requirements to ensure any potential loss of life and property damage due to reentering the

Earth’s atmosphere is minimized. In this scenario, design considerations are made to

account for material selection, redundant safe modes to control reentry, and other critical

factors to ensure the requirement can be met at end of life. As the system ages over its

www.manaraa.com

60

operational life, the initial decommissioning procedure may be unfeasible due to

extraordinary failures resulting in the need to redevelop and test a modified

decommissioning procedure. The prescribed path from Operate through Sustain & Improve

back to development enables this modification in parallel to continued Operations prior to

decommissioning. This again is intended to address the use of MBSE models to develop

and manage system behaviors and relevant operational support products in response to

operational circumstances.

3.2.5� Continuity & Collaboration Throughout the Life Cycle

While SEDevOps is directly derived from the DevOps principles of continuity and

collaboration between development and operations leveraging tools and technologies to

facilitate this, the focus of SEDevOps is on MBSE model implementation at the full system

level (i.e. macro-level). DevOps, applied in the software domain, generally provides the

framework to manage the life cycle of individual features or groupings of features (i.e.

micro-level) through the requisite phases seen in Figure 8: Plan, Create, Verify, Package,

Configure, and Monitor before moving on to the next feature development. Depicting a

broader system life cycle graphically with a traditional DevOps lemniscate would therefore

show a multitude of successive (and possibly parallel) lemniscates (cycles) throughout a

system’s life, similar to a view of the Agile model implemented throughout the life of a

system, seen in the notional graphic for Agile in Table 1.

SEDevOps incorporates a fork in the cycle where events during system operations can

result in a return to the development stages as warranted by the complexity of the updates

needed to the model and operational support products, or can remain in a continuous cycle

of Operate-Sustain-Improve-Test-Operate without a necessary return to System

www.manaraa.com

61

Development. Noted here for clarity, this implementation of SEDevOps is focused on the

instantiation and continuous management of MBSE artifacts throughout the life cycle of a

system as a means to create, model, test, and manage the products necessary to operate a

system. This distinction is important in establishing a framework for interrelating

operational support elements with development elements in system artifacts, namely in a

descriptive modeling environment, as introduced in Section 3.3 with a modeling extension.

An additional distinction to articulate is the resulting ability for operations and sustainment

personnel to manage and implement changes to operational support products in model

space without a full path back through the traditional systems engineering development

and deployment stages based on the management of operational support products within

an overarching system model.

To articulate the broadened focus of SEDevOps as compared to DevOps in the software

domain, the following example is presented. DevOps can support the roll-out of a software

application hosting framework without necessitating the incorporation of all apps in the

framework on day one. A vignette here is a smart phone operating system (framework) and

app store (application catalog). DevOps can then monitor the base functionality and cycle

back to develop applications individually, feeding back lessons learned into updates to the

framework as needed and as application complexity increases over time.

A spacecraft is a relevant example of a cyber-physical system. Due to the complexities

and extremes of space, it is unfeasible to launch a spacecraft without all necessary

subsystems (i.e. apps) populated, integrated, tested, and working. If a spacecraft is

launched without an attitude control system, for example, the base functionality is

irrelevant and unusable. Therefore, adapting DevOps principles to cyber-physical system

www.manaraa.com

62

development and deployment requires modification to the methodology to apply on a

broader time scale and a broader feature scale. SEDevOps is designed to broaden this view

and the associated support to enable the benefits seen at the microservice level in DevOps

to the full system level throughout the life of a system.

3.2.6� Evolution & Adaptation

As systems are deployed in an operational environment, scenarios arise which

necessitate responses to faults and failures, updates for changing environmental conditions,

and critical system enhancements to ensure continued success of the system. This requires

adapting system configurations and the associated support elements to address the need.

Such adaptation can range in complexity from simple procedural updates and associated

testing, centered on maintaining the baseline system capabilities in dynamic and evolving

environmental conditions, to more complex scenarios and system evolutions involving a

formal development cycle (conceive, develop, integrate, verify, etc.), based on the severity

of the adaptation and evolution required. The SEDevOps life cycle model promotes this

range in adaptation and evolution throughout the system operations & sustainment stages,

including the direct path back to a full specification, development, verification, and

redeployment cycle if the complexity of the adaptation and evolution warrant, as depicted

by the transition back to the left-side of the SEDevOps lemniscate. Figure 13 provides a

spin on the SEDevOps life cycle graphic representing the corresponding adaptation &

evolution cycles a system may go through over the life of a single product or more so, over

the life of a product line as the need for enhancements and evolution are learned over the

operational life of prior versions/deployments and factored into the development of future

products. Therefore, as systems are required to adapt to changing conditions, updates and

www.manaraa.com

63

enhancements are developed and deployed resulting in an evolution on the overall system

over time.

Figure 13 - System Adaptation & Evolution via the SEDevOps Life Cycle Model

3.2.7� SEDevOps Summary

Two fundamental principles of DevOps, and key enablers of the continuum between

development and operations, are:

1.� Continued curation of the development environment to enable accurate testing

2.� Tight collaboration between operations and development

Therefore, to properly implement SEDevOps, there must be a means to accurately

represent the operational system in an environment in which the development of

capabilities and features can take place at any point. Tying back to the push for digital

transformation of systems engineering, this is where a descriptive modeling environment

provides the platform for this continuum as it can be created during system development,

maintained during system operations, and leveraged for continued development and testing

of a system’s and its associated support element capabilities throughout. MBSE provides

www.manaraa.com

64

this platform and the necessary extension to enable use in operations and sustainment

stages is presented next.

3.3� A Framework for Applied Methodology: Model-Based System Operations

3.3.1� Summary

Implementing the concept of SEDevOps (i.e. continuous collaboration and

simultaneous model-based systems engineering support throughout the life of a system)

requires both a clear model, described in the prior section, and a framework for developing

and curating the surrogate operational environment in which to create and maintain the

operational support products. In the case of cyber-physical systems, the simplest

instantiation of a surrogate operational environment consists of a detailed representation of

the operational configuration of the system at any given point in time coupled with the

actions necessary to transition between configurations (i.e. procedures, commands,

maintenance manuals, etc.). In a sense, this becomes an operational emulation

environment.

MBSE tools and methodologies have driven large portions of the system life cycle into

this digital ecosystem however, as noted previously, the portions not adequately addressed

by MBSE methods and tools to date and critical to successful implementation of

SEDevOps are those supporting the operations and sustainment of systems.

 MBSO builds on the base of UML/SysML and the MBSE approach through an

ontology defining and relating operational support elements in a descriptive model,

depicted in Figure 14. Unless otherwise noted in figure captions, SysML figures presented

here and throughout Chapter 4 are originals created in the development of the MBSO

framework and for the supporting use case detailed in Chapter 4.

www.manaraa.com

65

Figure 14 - MBSO Ontology Represented in SysML Profile Diagram

The MBSO elements introduced in this ontology represent support products necessary

to manage and configure the state of a system within its environment. The result is a

descriptive modeling framework designed specifically to support the operations and

sustainment stages of a system life cycle, whereby support elements critical to the

continued operation of a system can be continually and accurately maintained, updated,

adapted, and verified within a digital, modeling environment throughout the system’s life.

When viewing the SEDevOps life cycle graphic in Figure 10, traditional MBSE

frameworks are designed to primarily support and enable the left side of the lemniscate

(the system development stages) while MBSO supplements those existing frameworks to

enable the right side of the lemniscate (the system operations and sustainment stages) and,

www.manaraa.com

66

more importantly, improve the interaction/iteration between the two sides through

continual adaptation and evolution of a system over its operational life. Figure 15 provides

a visual of this.

According to Friedenthal et al, “Formal representation may be referred to as an

ontology, a conceptual model, or a metamodel. This representation can then be used to

define domain specific extensions to the language” (Friedenthal, Moore and Steiner 2014).

Based on the ontology introduced in Figure 14, it is possible to build a Domain-Specific

Language (DSL) to be leveraged in the implementation of SEDevOps.

3.3.2� MBSO Domain Specific Language Components

MBSO extends the base SysML profile by creating a DSL designed for extending the

active use of detailed descriptive system models from the development stages into the

operational stages of a system’s life cycle. This includes defining and supporting the

process associated with operational support product development, testing, deployment, and

maintenance, including adaptation required in response to changing environments, aging

system elements, and evolving system needs. A key principle of SEDevOps shown earlier

in Figure 12 is the fundamental expansion of a system’s boundary beyond the traditional

physical system elements and intrinsic behaviors to more broadly include the enabling

system elements and extrinsic behaviors as part of the overall integrated system model. In

other words, this focuses on incorporating the products, artifacts, documents, and processes

needed to operate the system within an environment into the model, thus including

procedures, scripts, commands, configuration snapshots, etc. into the single-source-of-

truth system model. A different way to articulate this is procedures are simplified

representations of state transitions of a system requiring very methodical control, which is

www.manaraa.com

67

implemented and exercised through a formal modeling language. The ontology presented

in Figure 14 provides a representation of these key elements in the MBSO framework and

the relationship between the elements in a SysML Profile Diagram.

The DSL comes from transcribing the proposed ontology into a formal SysML profile

for MBSO (Castet, Rozek, et al. 2015) in order to syntactically enforce the stated

associations. This is accomplished through the customizations and stereotypes of existing

SysML elements identified in the “<< >>” brackets in Figure 14. These modifications to

the base SysML elements enable the creation of the MBSO specific elements defined in

more detail in Table 3.

Table 3 - Customized Elements in the MBSO Ontology

MBSO
Element

Details Graphical Depiction

Procedures Accomplish a pre-defined
and complete function or
system transition.
Composed of any number
of Procedural Sections
each designed to be self-
contained reconfigurations
usable in multiple
procedures

Procedure
Section

Perform a grouping of
steps to accomplish a
logical element of an
overall procedure.
Composed of one to many
Procedure Steps
(analogous to software
microservices and ideally
containerized or cleanly
bounded functions) to
perform singular actions

www.manaraa.com

68

MBSO
Element

Details Graphical Depiction

Procedure
Step

Execute a singular action to
configure one to many
operational elements by
executable commands to
enact a change on the
system

Commands &
Telemetry

Commands configure
operational elements and
are verified through
related telemetry to
confirm correct system
configuration state at any
point in time

System
Configuration
States

Signatures,
Limitations, &
Constraints

System Configuration
States are used as pre- and
post- configuration checks
for any procedure step,
poising the framework for
eventual formal methods
of procedural test and
verification.
Combined with
“Signatures, Limitations,
& Constraints” (SLCs) to
allow any procedural step
to be validated at the time
of procedure construction
and any time thereafter as
the system model and
system states change.

Operational
Element

Stereotype applied to
elements of a system
model. Allows for
emulating various states of
system elements in the
system model in order to
exhibit defined behaviors
when interacted with, such
as in a procedure

www.manaraa.com

69

Signatures, Limitations, & Constraints (SLCs) are a concept employed in space system

development and operations documenting unique system features where, for example,

commands must be sent in a particular order to avoid catastrophic results. A fully

interrelated metamodel enables this automated, continual, and formal consistency and

validity regression testing of procedures against current and potential system

configurations and product updates. Continual validation checks of element relationships

and constraints is a feature inherent in SysML modeling tools.

3.3.3� Life-In-A-Day (LIAD) Testing

Coupling the concept of executable composition, inherent in SysML, with the ability

to simultaneously represent past, present, and future states of a system in its environment

results in the creation of a DevOps-like environment to perform development and testing.

This provides systems engineers with a tool to manage operational support through system

configuration curation.

This facilitates a concept introduced here as “Life-In-A-Day” (LIAD) testing in which

simulated off-nominal life events encountered throughout system operations and

sustainment (such as component aging & degradation, environment evolution, etc.) can be

represented as configuration properties within the system model, and impacts to the broader

system (most notably, the operational support products) can be assessed, including

regression and validation testing against modified states. As a result, appropriately detailed

operational support products can be developed and thoroughly tested in advance to

streamline the response in real-time to conceived off-nominal events. This enables traversal

of the full SEDevOps Lemniscate through simulation with the ability to feedback findings

for incorporation to system development. This is not unlike simulating potential future

www.manaraa.com

70

states using a digital twin of a system however the focus here is on the management and

validity of the operational support products in the simulated future state.

This concept of LIAD testing to simulate and capture system agility and adaptability is

analogous to Day-In-The-Life (DITL) testing performed during traditional system

verification and validation to capture and validate system performance against stated

mission requirements. LIAD is designed to validate the system can continue to operate

through changing environments and in response to changing system behaviors. As noted

previously, with MBSE best representing the stages and artifacts on the left side of the

SEDevOps life cycle and MBSO representing and enabling the stages and products on the

right side, DITL testing supports the culmination of design and development of a system

on the left side of the SEDevOps life cycle to prove the right system has been fielded for

the intended use while LIAD testing facilitates the extension to the right side of the life

cycle model to validate the operational support elements provide agility and adaptability

to potential system and environment evolution, a relationship visually depicted in Figure

15. LIAD testing therefore provides validation that the system has the proper support

products to ensure continued operations throughout the life of the system.

Figure 15 - MBSE and MBSO Focus in the SEDevOps Life Cycle Model

www.manaraa.com

71

3.3.4� MBSO Modeling Methodology

This subsection outlines the modeling methodology by which to apply the MBSO

framework, broken into Modifications to System Context followed by Add-Ins for

Operational Context, representing the two main categories in the MBSO profile. The

MBSO domain-specific customization elements, as well as a number of unique stereotypes

used to identify status of operational elements, are captured in these two categories within

the MBSO profile, shown in Figure 16.

www.manaraa.com

72

Figure 16 - View of MBSO Profile Organization

www.manaraa.com

73

The purpose of this division is to establish a mechanism to apply MBSO to both

existing and new system models in a layered approach. If a detailed SysML descriptive

model is pre-existing, the MBSO “Operational Element” stereotype, depicted in Figure 17,

can be applied to the existing model elements to enable building interrelated configurations

within the model. This enables applying status of individual units such as “online”,

“offline”, etc. and subsystems (i.e. “nominal,” “degraded,” etc.). Figure 17 is a SysML

Profile Diagram representing a stereotype of the metaclass “Element” with enumerated

attributes for Operational Status and Operational Configuration. The enumerated attributes

are represented in the orange blocks on the bottom and referenced in the classifiers within

the figure.

Figure 17 - MBSO Operational Element Stereotype Details in SysML Profile Diagram

Figure 18 shows the application of these attributes to physical elements (i.e. blocks)

within a system model in a SysML Block Definition Diagram (bdd) and Figure 19 provides

www.manaraa.com

74

a view of the modified quick-select menu for operational elements, used to apply status

attributes to an operational element in an Internal Block Diagram (ibd). The model depicted

in both Figure 18 and Figure 19 is leveraged in the use case described in Chapter 4 and

represents the FireSat-II notional spacecraft architecture with its subsystems.

Figure 18 - MBSO Operational Element Stereotype Applied to Physical Architecture in a
SysML bdd (adapted from Friedenthal 2017)

www.manaraa.com

75

Figure 19 - Applying Operational Status Attributes in a SysML ibd (adapted from
Friedenthal 2017)

If a system model does not yet exist, the first step is the development of a descriptive

physical architecture model in a System Context to which the Operational Element

stereotype can then be applied on an element by element basis. Once the system model has

sufficient fidelity to represent the operational state of constituent parts, pre-existing

operational procedures, commands, telemetry items, etc. can be transcribed from native

formats (such as stand-alone documents or tables) into the modeling language and linked

directly to the system elements in the model. The result of building operational elements

within a system model is a single, interrelated source of truth to support both the

development domain and the operational domain, as represented in the SEDevOps life

www.manaraa.com

76

cycle model and as methodologically driven by DevOps principles on which SEDevOps is

based.

As a note on the MBSO profile shown in Figure 16, several additional profile elements

have been incorporated into the profile to support more detailed management of operational

content. Examples of these additional elements include a Configuration Management

stereotype and the addition of several potential actors which can be documented as

performers of various procedural steps. The specific utility of these two elements was not

assessed in the ensuing use case as they are examples of widely used inherent features of

SysML and associated tools. These can be considered elements for refinement in future

iterations of the MBSO profile.

3.3.5� MBSO Extension with Formal Methods

Extending the concept of model formalism in MBSE (Madni and Sievers 2018), MBSO

is designed as both “a descriptive and executable (dynamic)” formal model. MBSO

therefore lends itself to a formal methods approach to system operations based on concepts

proposed by (Wang and Dagli 2014), (Huang, McGinnis and Mitchell 2019), and (Graves

and Bijan 2011), discussed briefly in Section 2.6.1. Additionally, establishing a formal

method of verification within a DevOps-like construct enables the applicability of this

approach to high-criticality and safety-critical system management, as proposed by

Olszewska and Walden (Olszewska and Walden 2015) and discussed briefly in Section

2.6.2. Implementation of Petri Net behavioral flow representations (Wang and Dagli 2014),

(Huang, McGinnis and Mitchell 2019) and application to critical systems is identified as

an area of future research and development.

www.manaraa.com

77

This concept of formally verifiable operational support products is the basis for

autonomic system operations as initially sought in the question posed at the onset of

Chapter 2. The question: Can systems engineering support specific to operations and

maintenance/sustainment be codified in a manner to enable autonomic system operations?

drove the initial research and the identification of an opportunity and a need to extend

model-based systems engineering support into system operations. The advancements

introduced in this chapter, SEDevOps and MBSO, provide a foundation to codify

operational support in a modeling environment and promote progress towards

autonomicity in system operations. Additionally, leveraging a descriptive modeling

framework as a common interface for systems engineering products throughout a system

life cycle and encouraging continued collaboration between development and operations

drives the discipline a step closer towards a polymorphic existence.

www.manaraa.com

78

Chapter 4:� Data Collection & Analysis

In order to demonstrate the SEDevOps model and prove or disprove the initial

hypothesis regarding the utility of extending model-based systems engineering processes

and products to system operations, a use case was established. As the aerospace industry

continues its digital transformation progression, a spacecraft system operations scenario

provides a relevant opportunity for leveraging detailed, digital, descriptive system models

from system development into the operations stage. Additionally, spacecraft system

operations and sustainment tasks are traditionally performed by systems engineers adding

further applicability and utility to the example.

A well-known manuscript in the spacecraft engineering domain is Space Mission

Engineering: The New SMAD by J. Wertz, D. Everett, and J. Puschell (Wertz, Everett and

Puschell 2011). In this manuscript, the authors walk the readers through a detailed, multi-

disciplinary spacecraft system design as a means to teach the relevant and critical steps of

spacecraft design and development. The example spacecraft is called FireSat-II and, due

to the broad distribution and wide acceptance of the manuscript by Wertz et al, it was an

excellent and widely known starting point for this use case. Additionally, a detailed SysML

model of the notional FireSat-II spacecraft has been built by S. Friedenthal as an example

model for his and C. Oster’s book Architecting Spacecraft with SysML (Friedenthal and

Oster 2017). This SysML model is publicly available (Friedenthal 2017) and provided a

natural and detailed basis on which operational products were built and the utility of

SEDevOps and MBSO were tested.

As SEDevOps incorporates the traditional system development stages common to

many existing life cycle models, the system development progression in the life cycle is

www.manaraa.com

79

not covered specifically in the description of this use case. Instead, the FireSat-II model

provided a starting point, post-system-development, in which an MBSE methodology was

applied to generate the detailed model. This provided a robust point of departure for the

right side of the SEDevOps lemniscate with the application of MBSO to the model in order

to facilitate further simulation and assessment.

To perform this simulation and assessment, three separate scenarios are considered in

this chapter to demonstrate the utility of the SEDevOps model and the application of the

MBSO framework. The three scenarios are:

1.� A simulated failure of a critical spacecraft hardware unit resulting in a need to

reconfigure operational support products (i.e. executable command procedures)

to address the transition to and continued operation on a back-up, or redundant,

hardware unit.

2.� A scenario included for discussion in Section 4.2.4.1 is a case in which

intermittent and autonomous hardware unit toggles are present (A-side to B-

Side and back, or Primary to Redundant and back). This scenario references

spacecraft onboard flight computers which are susceptible to repeated space

radiation-induced bit-flips and subsequent power-on-resets. In this case,

operational support products (scripts, procedures, etc.) must dynamically

update to address the current online and in-use unit.

3.� An additional scenario provided for discussion in Section 4.2.4.2 is one in

which a catastrophic failure in a spacecraft battery pack results in permanent

degradation to mission capability due to limited system power. The result is a

need to re-develop the system Concept of Operations (CONOPS) and

www.manaraa.com

80

associated operational support products to address the new system constraints

not initially designed into the system architecture or CONOPS.

The primary use case described here and leveraged for data collection, metrics, and

analysis (number 1 in the scenario list), represents a streamlined application of SEDevOps

and MBSO for the notional FireSat-II spacecraft system demonstrating the concepts, with

a focus on impact assessment of operational support products to the simulated unit failure.

By applying the MBSO profile to expand the FireSat-II spacecraft descriptive model in

SysML, it is shown that impact assessment and maintenance of operational support

products can be streamlined. A hardware reconfiguration due to a power distribution unit

fault was simulated to initiate this use case and the results of procedural impact assessment

are presented. This simulated hardware failure illustrates the right-side of the SEDevOps

lemniscate in which an external influence during operations resulted in the need for system

reconfiguration and the consequential maintenance of enabling support elements (i.e.

command procedure update and test). The descriptive model used in this scenario was

created using the SysML tool suite in NoMagic’s Cameo Systems Modeler software and

figures presented herein are exports from the model. Where figures are directly presented

herein or adapted from the original FireSat-II model from Friedenthal, notation is included

in the figure caption. Otherwise, figures are originals created by leveraging MBSO.

The additional use cases are included in Section 4.2.4 for discussion to articulate the

utility of SEDevOps, MBSO, and the overall evolution to a more polymorphic approach to

systems engineering leveraging model-based systems engineering.

www.manaraa.com

81

4.1� Data Source: FireSat-II Modified through MBSO

4.1.1� FireSat-II Base Model

FireSat-II is a notional Earth-observing spacecraft designed to identify and track forest

fires. As noted previously, the detailed and widely available FireSat-II model, engineered

in Space Mission Engineering: The New SMAD (Wertz, Everett and Puschell 2011), was

initially built in SysML, as described in Architecting Spacecraft with SysML (Friedenthal

and Oster 2017). The base model includes traditional spacecraft and ground subsystems

needed to perform an Earth-observing mission in a low-altitude orbit. The model also

includes elements of the necessary ground support equipment to command and control the

system as well as to interface with key stakeholders to task the system to perform a sensor

collection and subsequently deliver the collected data to the appropriate destination.

The boundaries of the initial model are focused on key architectural elements in the

logical data flow concept of operations (CONOPS), from a task request on the ground to a

command sent to the spacecraft to data collection on-board the spacecraft to data

downlinking to the ground and finally data delivery to the initial requester. This approach

is considered standard in system development and omits key operational support elements

in the model required to execute the stated CONOPS, such as procedures to generate and

transmit commands to the spacecraft, maintenance manuals on system elements such as the

ground station antennas, and material to train the operators on the system configurations

and capabilities, all of which are critical to the success of the stated mission, but are not

traditionally resident within a system model. Figure 20 through Figure 23 provide views

of the FireSat-II model for context and to articulate the level of detail at which this use case

started.

www.manaraa.com

82

Figure 20 - FireSat-II Model Organization prior to MBSO Integration (Friedenthal
2017)

Figure 21 - FireSat-II Spacecraft (Friedenthal 2017)

www.manaraa.com

83

Figure 22 - FireSat-II Spacecraft Physical Decomposition, 2nd Level (Friedenthal 2017)

www.manaraa.com

84

Figure 23 - FireSat-II Spacecraft Subsystem Interconnection (Friedenthal 2017)

www.manaraa.com

85

4.1.2� MBSO Extension to FireSat-II Model

Using the MBSO profile described in Section 3.3.1 and the FireSat-II Cameo Systems

Modeler “.mdzip” file (Friedenthal, Architecting spacecraft with SysML FireSat-II model

2017), MBSO stereotypes were applied to existing model elements and new customized

operational elements were created using the methodology outlined in Section 3.3.4 and

described step-by-step below.

1.� The Operational Element stereotype was first applied to existing physical

elements of the FireSat-II spacecraft architecture, seen in the SysML bdd in

Figure 24. This enabled identification of relevant elements to then apply

command and telemetry items to as well as to track for closer configuration

management purposes, as is done on operational spacecraft system

elements.

2.� Next, appropriate status attributes (online, offline, nominal, degraded, etc.)

were allocated to the operational elements in the internal block diagram

inset to Figure 24 using the MBSO Modifications to System Context

features and leveraging the options added through the MBSO profile to the

quick-select menu on the SysML block definition diagrams and internal

block diagrams.

As a note, several additional stereotypes are present in the block definition

diagram in Figure 24 and were pre-applied in the FireSat-II model during the prior

stages of system design/development. These stereotypes are used to properly define

and structure the provided spacecraft model and include “system of interest” and

“subsystem” stereotypes.

www.manaraa.com

86

Figure 24 - MBSO Operational Element Stereotype Applied to Existing Physical
Architecture in SysML bdd and ibd (adapted from Friedenthal 2017)

3.� Leveraging the MBSO profile and the additional customizations and

stereotypes introduced earlier in the MBSO Ontology, Figure 14, a new

SysML diagram, “Command Database” with notional hardware-specific

configuration commands was created and linked (i.e. associated) directly to

physical elements of the FireSat-II model. These notional spacecraft

commands were generated specifically for this use case and were assigned

to one or more relevant hardware units, destination subsystem(s),

configuration parameters, and telemetry verifiers. Figure 25 provides a view

of the command table generated for this scenario. For context, command

databases of this nature are not traditionally included in descriptive system

models. With the advancements in MBSE and the call-to-action for digital

transformation within the systems engineering domain, there will be a

widespread shift to capture this level of data in the system model. MBSO

provides a framework to initiate this transition.

www.manaraa.com

87

4.� Next, an additional new SysML diagram, “Telemetry Database” with

telemetry parameters, used to verify the state of hardware units and

ultimately the success of commands and the reconfiguration actions

initiated, was created to represent notional data points to monitor for status

using the MBSO Add-Ins for Operational Context telemetry stereotype.

Figure 26 shows an excerpt from the telemetry database created for this

scenario. Similar to the note on command databases, telemetry databases

are not traditionally incorporated in descriptive system models.

5.� Following creation of both command and telemetry databases, elements

from each were linked (“allocated”) together through a “verify” relationship

which dictates specific telemetry elements as the source of verification of

command implementation and the actions they invoke within the associated

hardware units. Figure 27 depicts a SysML dependency matrix used to

perform the linkage as well as to provide a quick visualization artifact of

interrelations between command and telemetry items.

www.manaraa.com

88

Figure 25 - Notional FireSat-II Command Database created with MBSO Profile Elements, in a Customized SysML Table Diagram

www.manaraa.com

89

Figure 26 - Notional FireSat-II Telemetry Database created with MBSO Profile Elements, in a Customized SysML Table Diagram

www.manaraa.com

90

Figure 27 - FireSat-II Notional Command & Telemetry Element Interrelation in a SysML
Dependency Matrix

6.� Finally, the SysML Block Definition Diagrams in Figure 28 and Figure 29

show the elemental relationship created between physical hardware

elements in the FireSat-II system and the command and telemetry elements

created using the MSBO profile elements. The orange <<command>> and

<<telemetry>> elements represent the uniquely created content for this

simulation and align to the previously mentioned command and telemetry

database visualizations (Figure 25 and Figure 26, respectively).

www.manaraa.com

91

Figure 28 - Command & Telemetry Interrelationship to Inertial Measurement Unit in
SysML Block Definition Diagram

Figure 29 - Command & Telemetry Interrelationship to High Rate (HR) Transmit
Amplifier Unit in SysML Block Definition Diagram

www.manaraa.com

92

Based on the steps outlined in this section, the MBSO-modified FireSat-II model was

in a state ready for the generation of sample operational procedures to be leveraged in the

use case to follow. For comparison purposes with Figure 20, Figure 30 below is a

representation of the FireSat-II model after incorporation of the MBSO profile and

generation of associated model elements.

Figure 30 - FireSat-II Model Organization Following MBSO Integration (adapted from
Friedenthal 2017)

4.2� Use Case: Life-In-A-Day Simulation & Response

4.2.1� Impact to Critical Unit Failure & Simplified Ops Product Roll-Out

To fully configure the FireSat-II model for use in this simulation, representative

operational procedures were created, using the procedure, procedure section, and procedure

step customizations introduced in the MBSO ontology in Figure 14, to characterize the

basic response to a failed power distribution unit and the ensuing transition to a redundant

www.manaraa.com

93

unit as the new “online” and in-use unit. Figure 31 provides a SysML activity diagram

view of the command procedure generated for this scenario and Figure 32 provides a

customized MBSO table view of the same procedural steps.

Figure 31 - SysML Activity Diagram representing the Flow of Actions for Command
Procedure to Reconfigure Power Loads for Failed Converter Unit

www.manaraa.com

94

Figure 32 - Customized SysML Table Diagram representing the Command Procedure to Reconfigure Power Loads for Failed
Converter Unit

www.manaraa.com

95

In generating the procedural representation, several redundant/back-up hardware units

were created and incorporated into the existing FireSat-II physical architecture model,

enabling linkage and simulation of a broader system reconfiguration in response to this

simulated fault.

In order to quickly and visually capture the impact assessment to operational procedure

changes necessary to account for the simulated hardware failure, a SysML Dependency

Matrix was generated. This view shows the specific elemental interrelation between

procedural step, command, telemetry, subsystem, and hardware unit, seen in Figure 33,

therefore establishing a dynamic, real-time mechanism for tracking all procedural steps

interacting with the power distribution hardware unit and which procedural steps require

updating for use of the back-up, or redundant, unit.

Figure 33 - FireSat-II Procedural Step Dependency Matrix in SysML

www.manaraa.com

96

Configuration of the model in this way facilitated exercising a sample LIAD test case

by assessing the impact of the primary power distribution unit failure throughout the

necessary support elements. This method of inherent traceability in a model simplifies the

review of procedures, scripts, and commands for necessary changes. The result was the

identification of numerous “mis-configurations” in the support products with the ability to

quickly correct the necessary procedure steps.

In this manner, the update to any number of procedures, scripts, and commands can be

identified and corrected with a small number of touch points. In contrast to practices

without interrelated, model-based representations, this process is a task performed by the

system operations team to search all products for impacted procedural steps, assess the

impact, propose and review the required updates, test the updates for accuracy and

completeness for the new configuration, regression test related procedural sections to

ensure no inadvertent misconfigurations were introduced, and deploy the change to the

operational system. MBSO provides the ability to perform this process with minimal touch

points through established inter-relationships and re-use of common steps, elements, and

pre/post-configuration constraints isolating procedural steps in a manner similar to

containerized microservices in a software suite. The result is a modeling tool designed to

support and enable the sustainment and adaptation described in Chapter 3 and depicted

visually in the SEDevOps lemniscate seen in Figure 10.

The example provided was a simplified adaptation of existing operational support

products (i.e. procedures) where the resolution was easily identifiable (swap a primary A-

Side unit for a redundant B-Side unit and update procedures to address the new unit) and

did not require a more thorough concept, design, develop, integrate, test cycle. More

www.manaraa.com

97

complex scenarios are introduced in the following subsections for discussion and

comparison purposes.

4.2.2� Discussion on Cost & Implications

Life cycle costs continue to be a focus of attention. NASA, for example, identifies

spacecraft operations costs as an area of increasing concern resulting in significant looks

into ways to reduce manual support and increase automation to reduce overall sustainment

costs (Truszkowski, et al. 2009). To generate a relative metric to assess cost savings

through the use of MBSO for an operational system, the example fault response provides

a starting point. Leveraging the FireSat-II spacecraft and simulating a power distribution

unit fault in the manner presented, it is possible to identify 23 units in the spacecraft which

directly source power from the failed unit. As a note, in order to establish this level of data

for this use case, the FireSat-II model was modified to incorporate additional lineage for

critical interfaces for hardware units, including power (relevant to this example), command

paths, and telemetry paths.

Based on this additional detail, for each procedure where the downstream units are

commanded or powered on/off (i.e. interface with the power distribution unit), there exists

a procedural step, script, and command to address and configure the unit appropriately. For

the purposes of this comparative cost exercise, it is assumed this is covered by 3 procedures

at a minimum, one for system start-up (i.e. power-on upon initialization or following a low

bus voltage event), one for a contingency response to a power system fault, and one for

system shut-down. In each of these procedures, there exist at a minimum 23 occurrences

of steps addressing the failed distribution unit requiring an update, one for each unit

sourcing power from the failed unit. This results in roughly 70 procedural updates

www.manaraa.com

98

traditionally performed manually by a systems engineer providing operations support. In

addition to the direct procedural updates, the changes require testing, review, and

deployment/release for use. If a notional unit of effort is assigned for each single touch

labor point, it is possible to generate a relative labor ratio between a traditional, manual

approach and the MBSO approach. For this exercise, the manual modification of each step

is designated as a touch point. The testing of all changes in a single procedure is grouped

into one unit of effort as a single procedural test and similarly the review of one procedure

is grouped into a single unit, and finally the deployment of one procedure is designated as

a single unit. This results in 69 procedure step updates, 3 procedure tests, 3 procedure

reviews, and 3 procedure deployments for a total of 78 notional “units” of touch-labor

effort. In comparison, leveraging MBSO results in the following interactions with the

system model:

1.� Acknowledge the hardware failure by modifying the status of the online power

distribution unit as a configuration change in the model (i.e. toggle

online/offline status of the unit).

2.� Review a predefined dependency matrix in the model for identification of

impacted procedural steps in which the power distribution unit is referenced, as

seen in Figure 33.

3.� Select the now online unit as the destination unit which, through element

relationships in the model, is propagated to each affected step in each

procedure.

www.manaraa.com

99

4.� Deploy the updated procedures to the operational system (traditionally a

configuration controlled repository) through an export or “publish” action from

the system model.

Implicit in the stated MBSO steps is the immediate propagation of element

relationships and updates (creating the ability for continual comparison of procedures

against the system configuration and resultant regression and validation testing) which

resulted in the noted impacts. The result is a comparison of units of manual touch-labor

effort of almost 80 for the traditional manual approach vs. 4 for the MBSO approach, or a

nearly 20 to 1 reduction in required interactions and therefore inferred level of effort.

While this is a notable reduction in the level of interaction required to identify, test, and

deploy a change, it does not consider the level of effort required to build this capability

into a system. There is, inherently, non-recurring engineering required to transition

existing, non-model-based operational products into a MBSO model. There is also a non-

zero level of effort required to create operational support products in MBSO during system

development, however this may be deemed equivalent to the level of effort required to

initially generate the products in traditional formats such as documents, tables, and

spreadsheets. Lastly, there is a learning curve associated with SysML and related profiles

which comes with both a labor impact to gain familiarity as well as an organizational hurdle

for general acceptance of a new practice. Understanding there is sometimes drastic change

required to implement a model-based approach, many MBSE texts devote sections and

even chapters to documenting ways to best navigate the stigma associated with this type of

change (Friedenthal, Moore and Steiner 2014). This is identified as a potential challenge

to implementation in a discussion on challenges in Section 5.4.3.

www.manaraa.com

100

4.2.3� Use Case Summary

The example provided was a straightforward modification of existing system support

products where the resolution was easily identifiable and did not require a more in-depth

systems engineering effort for a conceive, design, develop, integrate, and test cycle.

Viewing the SEDevOps lemniscate, this involved the “Operate” stage where the simulated

failure occurred, followed by the “Sustain/Improve” stage where the impacted procedures

were improved to account for operations on the redundant unit. Finally, prior to releasing

the updated procedures into operations, they would require Testing, at the center of

SEDevOps.

A properly and thoroughly constructed descriptive model supports continuous

regression and validation testing enabling the updated procedures to be validated against

thorough constraint models and available to execute upon completion of the updates in the

model. As a note, the use case provided here was an early validation of MBSO to a probable

scenario. As described in Section 5.3, further research and development is warranted to

expand the model to include detailed system configuration state constraint enforcement,

automated procedure updates, continuous validation and regression testing, and ultimately

a formal methods application for change verification.

4.2.4� Discussion on Additional Use Cases

In addition to the adaptation represented by a one-time failure and update to

corresponding operational support products in the previous scenario, this automated impact

assessment and streamlined product update can be applied to other types of adaptations

required during the operational life of a system, such as for recurring system configuration

www.manaraa.com

101

toggles and the exploration and development of mission utility expansion, both described

here.

4.2.4.1� Managing Recurring Unit Toggles Use Case – A Candidate for

Formal Methods Application

Recurring configuration toggles can occur in a system with built-in fault protection

designed to respond to an off-nominal scenario by toggling, or “failing-over” to a spare

unit to isolate the identified problem and continue system operations with limited impact.

For example, on a spacecraft, single-event upsets (i.e. bit-flips) in on-board computer

memory due to the harsh radiation environment in space can result in an automated fail-

over to a back-up computer. Upon reboot, the originally affected computer memory is

refreshed to clear the undesired bit-flips, deemed functional, and established as the new

backup for the next toggle. In each occurrence, procedures and commands must be updated

to properly address the current online computer (i.e. a different physical destination on the

spacecraft, many times with different command addresses and paths for added fault

protection purposes) and therefore require continual procedure maintenance and

management for accurate system command and control. Automating the procedure

composition in response to current system configurations allows for minimal engineering

rework and test upon each occurrence. In response to the current state of the system at any

point in time, the procedures can be generated directly out of the system model with the

correct destination unit in the proper step.

Based on concepts proposed by (Wang and Dagli 2014) and (Huang, McGinnis and

Mitchell 2019) discussed in Section 2.6.1, this approach of leveraging descriptive system

models for state and behavior management supports the representation of procedures and

www.manaraa.com

102

ensuing system behavior as Petri Nets – one example of a formally verifiable elemental

construction. This is a viable next step in MBSO directly applicable to the scenario

discussed in this subsection and is a concept with potentially significant implications to

evolving the manner in which system operations is performed, including the potential for

run-time procedure generation. Tying back to the concepts of microservices and

containerization which have enabled almost continual integration and continual

deployment in the software realm, this type of implementation in support of cyber-physical

system operations is a logical application.

4.2.4.2� A Mission Expansion Use Case – A Return to the Development Cycle

For a more complex operational scenario, the following was considered and is

presented here for context but was not simulated. If, for example, the FireSat-II spacecraft

failed several cells in its battery pack, resulting in limited and insufficient power available

for mission data collection during an orbit, a more complex system-wide adaptation would

require a conceive-design-develop-integrate-test cycle (the left-side of the SEDevOps

Lemniscate, Figure 10) to trade and redesign how energy is managed for the remainder of

the system life. This scenario drives a new system operating mode where non-essential

hardware units are powered off when not in use to save power, a mode not initially

designed, developed, or tested prior to system deployment and one that necessitates

propagating procedural changes throughout many support products, including a significant

test campaign to ensure viable performance and to verify no additional regression or

adverse conditions have been introduced.

Considering the SEDevOps life cycle model, in this scenario the battery failure occurs

in the Operate stage, causing a transition to the Sustain/Improve stage to assess and

www.manaraa.com

103

determine path forward. Following an assessment, the systems engineers transition back to

the Conceive stage to initiate a new development cycle for modified capability based on

the impact and permanence of the failure. Requirements must be reevaluated and viable

operating modes must be designed, developed, integrated, tested, and deployed. This type

of adaptation and evolution cycle is therefore represented by the return to the system

development stages on the left side of the SEDevOps Lemniscate to leverage well-

established systems engineering processes and tools for development, including MBSE

models tied to development products. This would be followed by appropriate verification

testing to confirm successful development and the redeployment of necessary enabling

system elements to system operations on the right side of the lemniscate. Note that for a

spacecraft in orbit, the spacecraft hardware is not undergoing a re-development cycle

however the states and modes of the spacecraft are revisited, reevaluated, and addressed in

new operational support elements to use those hardware elements in a different and initially

unintended manner based on new system constraints. This is enabled by the incorporation

of support elements into the core system model.

4.3� Summarizing the Insight Gained Through Use Cases and Addressing Hypothesis

In addition to implementing the capabilities described in this chapter in response to

real-time events during the operational life of a system, all of the described scenarios can

be simulated and tested in advance of experiencing an event during system operations,

thereby providing the systems engineering team with additional capabilities in assessing

the readiness for operations of a system and its support products prior to system

deployment. As previously noted, this is introduced as LIAD testing and provides a method

for full operational life validation analogous to DITL testing typically performed during

www.manaraa.com

104

system validation before transitioning to a fully operational state of a system. In order to

properly assess viability of a system for later life cycle stages, a LIAD test approach

provides early validation of adaptability and agility of a system and its support elements in

a condensed and simulated manner. This offers an advancement beyond the traditional

benefits of the DevOps methodology in the software domain and represents the driver for

a SEDevOps approach to life cycle management and a mechanism for systems engineering

to exist in multiple stages simultaneously in a polymorphic sense.

Revisiting the initial research questions posed in Section 1.4.1, answers can be

identified based on the data collected and analyzed through the use case in this chapter.

Table 4 below provides answers to the proposed research questions.

Table 4 - Research Questions Answered

Research Question Answer

1. Can the generic systems engineering

life cycle model be expanded to

promote the same rigorous, centralized

and interrelated model-based approach

leveraged in system development into

and throughout system operations and

sustainment?

Yes. Drawing from a number of existing and widely

implemented life cycle models, a logical adaptation

interleaving strengths of each was created with an equal

focus on System Operations in combination with System

Development. This SEDevOps model promotes a

continuum from development to operations and back to

foster a continuous model-based approach and common

data products and processes.

www.manaraa.com

105

Research Question Answer

2. Can the MBSE methodology and

associated toolchains be adapted to the

operational stages of a system’s life

cycle?

Yes. Leveraging MBSE tools, processes, and common

output products, a natural extension into system operations

was developed, designated MBSO. This extension focuses

on the incorporation of operational support products that

can be modeled and, more importantly, exercised within a

descriptive modeling framework. This creates a model-

based development environment for cyber-physical system

operations akin to the software development environment

leveraged for a DevOps approach to software systems.

3. Can this adaptation of MBSE

provide an adequate framework for

enabling continuous model-based

system development during the

operational stages of a system thereby

improving efficiency, agility, and

operational availability over traditional

system engineering practices and

methods?

Yes. Establishing a common platform for modeling aspects

of systems operations within a MBSE toolchain (one that is

growing ever more familiar to systems engineers) facilitates

a transition to a fully digital ecosystem for systems

engineers through the life cycle of any system. It was

shown this interrelation within a common tool greatly

streamlines efforts and work product maintenance for

systems engineers.

Factoring in the answers to the three research questions above, the hypothesis in

Section 1.5 was confirmed: a model-based approach to full life cycle management

improves agility (i.e. responsiveness to change) in system operations and provides an

opportunity to reduce life cycle costs as compared to current methods without active use

of MBSE during system operations.

www.manaraa.com

106

Chapter 5:� Conclusions

5.1� What was Accomplished: Contributions to the Field

The two major contributions presented in this research to address the stated research

objectives in Section 1.4.2 are:

1.� The SEDevOps life cycle model to emphasize the continuity of a model-based

approach to system development and operations throughout the full life cycle of a

system

2.� The MBSO framework to implement this life cycle approach within a model-based,

digital ecosystem

SEDevOps is based on the principles of DevOps implemented in the software domain

and closely links system development products, processes, and tools to system operations

with a focus on collaboration and continuous integration, testing, deployment, and

monitoring. SEDevOps prescribes interrelated model-based systems engineering

processes, and more importantly products and artifacts, throughout an entire system life

cycle. This focus goes beyond the traditional system-development-heavy MBSE

concentration, where support to system operations and sustainment builds on a descriptive

model from system development and maintains this model throughout system operations

with a direct path back to development processes and tools as sustainment tasks require.

Additionally, system development teams have a feed-forward mechanism to system

operations with the ability to validate system and support product feasibility in a forward

looking, LIAD simulation and testing approach. The LIAD testing concept introduced

herein enables validation of operational support products through simulation of variable

and evolving environments in addition to system aging and elemental morbidity. The

www.manaraa.com

107

outcome of testing in this manner is the ability to validate that operational products can

adequately handle variability as well as establishing a mechanism to further explore and

test operational CONOPS early in the system development processes.

The MBSO descriptive modeling framework builds on the continually increasing

momentum of MBSE to carry descriptive system models into active use during system

operations and sustainment. This is accomplished through the expansion of SysML to

include operational support product elements (i.e. procedures, maintenance manuals,

command and telemetry databases, etc.). This expansion provides the ability to adapt and

evolve elaborately interrelated system configurations and modular executable products

over time, both proactively and reactively. Furthermore, this approach inherently lends

itself to continual validation and regression testing at the time of model construction and

at the time of any ensuing updates providing further utility to the systems engineering team

in developing and sustaining a system and its support elements throughout the full system

life cycle.

The utility and benefits of active use of descriptive system models to represent, curate,

and maintain executable procedures was demonstrated through a spacecraft system

operations use case. In this, it was demonstrated that linking a detailed spacecraft system

model to the executable procedural steps to reconfigure the system during operations and

sustainment streamlines the response to events encountered during the life of a system and

proves the feature of improved agility as the ability to handle change. In this use case, a

critical hardware unit failure was simulated and the identification of all relevant operational

products impacted by this failure and requiring update were rapidly identified. An

extrapolation to the positive effects this implementation has on life cycle costs during

www.manaraa.com

108

system operations was presented. This use case provides early endorsement of a single

viable interface for systems engineering tasks throughout the life of a system given the fact

that the model leveraged for this use case was developed as a product during the notional

design stage of a system life cycle and proposed herein for active use during system

operations. Additionally, based on the application explored in this use case, several other

use cases were posited with viability and benefits identified.

5.2� What was Not Accomplished and Limitations of Findings

A known limitation of MBSO as the framework for applying SEDevOps is the overall

scope, which is restricted in this initial implementation to software-based operational

support elements, where updates, impacts, testing, and deployment can be performed

autonomously with little touch labor. Hardware updates are, by their nature, more physical

in the level of interaction required, and therefore the benefits of this approach and the

findings articulated in this research are limited to the products surrounding, enabling, and

operating hardware systems rather than updates to the physical hardware elements

themselves. Additionally, the simulation presented in the data collection use case was

limited to development and maintenance of operational support products and did not extend

to formalized system configuration state management.

The end result of meeting the research objectives and proving improved agility to

system operations events and an opportunity to reduce operational costs was not impacted

by the two limitations noted above. Much of the modeling infrastructure to perform the

additional configuration state curation was developed in the MBSO profile and can be

coupled with the inherent functionality in most MBSE tools, and specifically in Cameo

Systems Modeler used for this development, and is therefore identified here as the next

www.manaraa.com

109

step in advancing the contributions presented and is therefore an area of future research

noted below.

5.3� Areas of Future Research

Further research into improvements and future applications of SEDevOps and MBSO

is merited. The following expansions on these concepts were considered in the body of

research however not fully formulated or vetted at the time this manuscript was compiled.

Reaching back to the concept introduced at the start of Chapter 2, in order to develop and

deploy fully autonomic systems, a normalizing foundation of products and processes is

required. SEDevOps and MBSO provide this foundation and the concepts presented here

for further research expand upon this foundation, making fully autonomic systems one step

closer.

5.3.1� Formal Methods & Safety Critical System Operations

Further research and development is warranted on expanding the incorporation of

formal methods directly into the MBSO profile and applying the modified profile to safety

critical systems. Formal methods allow for constraint-driven configuration checking to

mathematically prove a model is both correct and complete (Blanchard and Fabrycky 2006)

which, in the case of MBSO, enables automating system support product update, testing,

and deployment with high confidence and assurance, making safety critical system

management in this manner viable.

5.3.2� Autonomic System Operations

Based on this approach for formal method implementation, a logical next step is to

incorporate further degrees of autonomy and, ultimately, autonomicity (Truszkowski, et al.

www.manaraa.com

110

2009) into system operations to the extent of enabling adaptability with formal pre-

verification as well as run-time verification of executable products. This is based on the

clear definition of and strict adherence to pre-configuration and post-configuration states

managed within the model and directly interrelated to the operational products. This

enables correct-by-construction building blocks for operational support element

development and execution, effectively an application of formal methods.

Extrapolating one step further, once adequate and accurate signatures, limitations, and

constraints are built into an expanded system model and coupled with the relevant

command and telemetry databases, it is feasible to apply machine learning algorithms to

find the optimal path between two known (or partially known) configuration states,

therefore autonomously and thoroughly developing operational procedures able to be

formally verified a priori and at run-time. This is a fertile area of research and one not yet

addressed with respect to SEDevOps and MBSO.

5.3.3� Prognostics, Diagnostics, & Data Trending

Another area for continued research is in adding prognostic capabilities into MBSO

where system health data is continuously processed, trended, and compared with known

configurations and behaviors for signs or trends of abnormality. System operations support

teams can prepare and test proactive responses within the modeling environment prior to

deploying configuration changes to the physical system resulting in the ability to influence

trends as needed for successful operations before fault conditions are triggered. Likewise,

adding diagnostic capabilities into the system model for cases where proactive measures

are either not possible or not implemented prior to a fault event would enable generating

procedures in real-time in response to events, computing new valid configurations and

www.manaraa.com

111

transitions between them, and implementing fault responses as needed to ensure system

reliability against encountered events.

5.4� Research Benefits & Potential Implementation Challenges

The SEDevOps life cycle model and the MBSO framework provide numerous benefits

throughout system life cycles, supporting the overall digital transformation initiative for

systems engineering, and providing a basis for the single model-based interface point to

enable a more polymorphic systems engineering discipline.

5.4.1� Benefits of SEDevOps

The SEDevOps model is a logical merger of various life cycle approaches spanning

sequential, evolutionary, and emergent methods (SEBoK Editorial Board 2020). As noted

in Table 1, each life cycle method brings certain strengths for systems engineers and

SEDevOps is designed to leverage strengths from each. The individual development stages

of SEDevOps support a layered, sequential approach to capture the strengths and rigor of

plan-driven methods. The cyclic development construct promotes iterative and

evolutionary development to field and continually adapt capabilities to evolving needs. The

overall lemniscate integrates an operational focus with established development tools,

processes, and artifacts to improve adaptability throughout a full system life cycle. A

notable enabler of this paradigm for operational systems is the focus on continual testing

and validation of executable products against system configurations with the Test stage

emphasized at the center of the SEDevOps model.

www.manaraa.com

112

5.4.2� Benefits of MBSO

Extending the validation of executable products noted previously to managing

configuration changes, MBSO enables identification of impacts, potential mitigations to

these impacts, the ability to test changes to system configurations for semantic and

syntactic correctness, and the capability to regression test updates for unintended impacts

based on those changes. These tasks, inherent in MBSO, are traditionally manual actions

requiring touch-labor on operational products and, without robust configuration

management and testing capabilities, present a risk of incomplete impact assessment,

overlooked procedures or procedural steps, and incomplete testing and validation.

An additional benefit of MBSO is the configuration management capabilities

intrinsically built into descriptive modeling tool suites based on the check-out/commit and

trunk/branch method of software development which enables detailed accounts of model

updates and the ability to quickly and easily roll-back changes (i.e. “commits”) to prior

versions. This also enables systems engineers to work in separate branches of a model to

develop and test feature improvements during system operations without impacting the

operational baseline. As DevOps principles, and SEDevOps by adoption, focus on

toolchains and collaboration, this feature of MBSO is a critical enabler for more efficient

operations and sustainment.

Using the MBSO framework, this configuration management benefit can be extended

to knowledge items, formalizing what has been traditionally considered "tribal knowledge"

associated with systems (Douglass 2016). Expanding upon this, many configuration

changes during the operational life of a system are driven by reactions to events, both

internal and external to the system of interest. Background and supporting knowledge

www.manaraa.com

113

which resulted in the chosen path forward is many times held in memory by a small number

of personnel involved and captured in documentation on a non-interfering basis. The result

is lost fidelity over time on why configuration changes were made, what impacts were

assessed (and not assessed), and erosion of general system historical knowledge as

personnel transition off of projects over the course of the system life cycle. MBSE

descriptive modeling tools include built-in attributes to capture notations and detailed

information, providing a means to document historical data in a single location for quick

reference at any point in time, directly associated with a specific system element (such as

leveraging the “Documentation” elemental attribute in Cameo Systems Modeler) or

configuration change (by documenting rationale and information with any model update

during the “commit”).

5.4.3� Potential Implementation Challenges

While SEDevOps and MBSO have the potential for improving agility and reducing

cost in adaptable system operations, they are not without potential implementation

challenges, including:

Adoption – While DevOps continues to gain traction and supporters in the software

domain, it is not without adoption challenges, including availability of requisite tool suites

and properly trained personnel. SEDevOps likely faces similar adoption challenges in the

systems engineering domain. An area for future development to improve adoption and

implementation is the creation of a detailed SEDevOps modeling plug-in, broadened

beyond just MBSO, akin to the Unified Architecture Framework in which users are visually

directed through a number of steps to build-out the required level of detail within a

modeling framework. Implementing a broader SEDevOps modeling language profile

www.manaraa.com

114

would foster early adoption and creation of necessary products throughout an entire system

life cycle.

Investment – As with any process improvement, investment is required to enable

progress. Building a detailed system model leveraging MBSO will require investment in

requisite tools, training, and personnel to support the transition and ramp-up. As noted in

systems engineering literature, the transition to MBSE, and in this case its extension to

MBSO, requires investment in infrastructure, process, and training (Friedenthal, Moore

and Steiner 2014), (Madni and Sievers 2018), (Ramos, Ferreira and Barcelo 2012).

Maintenance – Once operational support products become part of the overall system

model, maintenance of the model and continually synching with the operational state

becomes critical to success of the expanded system. Without rigorous configuration

management and infrastructure in place, SEDevOps and MBSO success may be

challenged.

5.5� Final Remarks

The benefits of the SEDevOps life cycle model implemented through the MBSO

framework were presented in a use case in which a simulated unit failure was assessed via

intrinsic model features for impacts to operational support products during the notional

operations and sustainment stages of a spacecraft system. As the scale and complexity of

systems continue to increase, the risk to operational support product maintenance and

update in response to dynamic events also increases. Establishing a model-centric, single

source of truth approach to linking and managing system support products built on detailed

descriptive models improves consistency, reduces risk, and drives down manual touch

www.manaraa.com

115

points in operations thereby offering an opportunity to reduce life cycle costs while

improving overall agility of both the system and the systems engineers.

With that, the research detailed herein provides a step towards polymorphic systems

engineering by establishing a model-based continuity across the entirety of a system’s life

cycle.

www.manaraa.com

116

Chapter 6:� Bibliography

Alberts, David S. 2011. The Agility Advantage. Washington, DC, USA: DoD Command
and Control Research Program.

Atlassian. 2019. How to choose the right DevOps tools. Atlassian. Accessed June 2019.
https://www.atlassian.com/blog/devops/how-to-choose-devops-tools.

Balalaie, Armin, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. "Microservices
architecture enables devops: Migration to a cloud-native architecture." IEEE
Software 33 (3): 42–52.

Basili, Victor R., and Craig Larman. 2003. "Iterative and incremental developments: A
brief history." Computer 36 (6): 47–56.

Bass, Len, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software Architect’s
Perspective, 1st Ed. Old Tappan, NJ, USA: Addison-Wesley.

Beedle, Mike, Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, Jim Highsmith, Andrew Hunt, et al. 2001. The agile manifesto: Principles
behind the agile manifesto. Accessed February 2018.
https://agilemanifesto.org/principles.html.

Blanchard, Benjamin S., and John E. Blyer. 2016. Systems Engineering Management, 5th
ed. Hoboken, NJ, USA: Wiley.

Blanchard, Benjamin S., and Wolter J. Fabrycky. 2006. Systems Engineering and
Analysis, 4th ed. Saddle River, NJ, USA: Prentice Hall.

Boehm, Barry W. 1988. "A Spiral Model of Software Development and Enhancement."
Computer 61-72.

Boehm, Barry, and Richard Turner. 2004. Balancing agility and discipline: a guide for
the perplexed. Crawfordsville, Indiana: Addison-Wesley.

Bryson, Jeff. 2010. "Polymorphic System Architecture." INCOSE International
Symposium. 370-385.

Castet, Jean-Francois, Magdy Bareh, Jeffery Nunes, J. Steven Jenkins, and Gene Lee.
2016. "Fault management ontology and modeling patterns." Proc. AIAA Space
Astronaut. Forum Expo. Long Beach, CA, USA. 1–17.

www.manaraa.com

117

Castet, Jean-Francois, Magdy Bareh, Jeffery Nunes, Shira Okon, Larry Garner, Emmy
Chacko, and Michel Izygon. 2018. "Failure analysis and products in a model-
based environment." Proc. IEEE Aerosp. Conf. Big Sky, MT, USA. 1-3.

Castet, Jean-Francois, Matthew Rozek, Michel Ingham, Nicolas Rouquette, Seung
Chung, Aleksandr Kerzhner, Kenneth Donahue, et al. 2015. "Ontology and
modeling patterns for state-based behavior representation." Proc. AIAA Infotech
Aerosp. Kissimmee, FL, USA. 1-22.

Cloutier, Robert, Brian Sauser, Mary Bone, and Andrew Taylor. 2015. "Transitioning
systems thinking to model-based systems engineering: Systemigrams to SysML
models." IEEE Transactions on Systems, Man, & Cybernetics: Systems 45 (4):
662–674.

Codetta-Raiteri, Daniele, and Luigi Portinale. 2015. "Dynamic Bayesian networks for
fault detection, identification, and recovery in autonomous spacecraft." IEEE
Trans. Syst., Man, Cybern., Syst. 45 (1): 13–24.

Combemale, Benoit, and Manuel Wimmer. 2019. "Towards a model-based DevOps for
cyber-physical systems." Proc. 2nd Int. Workshop Softw. Eng. Aspects
Continuous Develop. New Paradigms Softw. Prod. Deployment. Villebrumier,
France. 1-11.

Compuware. 2019. Mainframe DevOps. Compuware. Accessed June 2019.
https://www.compuware.com/lifecycle-overview/.

Crane, Jeremiah, Vinodini Sundaram, Justin Malek, and Leonard Brownlow. 2017.
"MBSE for sustainment: A case study of the air force launch and test range
system (LTRS)." Proc. AIAA Space Astronaut. Forum Expo. Orlando, FL, USA.
1-9.

Delligatti, Lenny. 2014. SysML distilled – A Brief Guide to the Systems Modeling
Language. Upper Saddle River, NJ, USA: Addison-Wesley.

Dictionary.com. 2020. Polymorph. Accessed September 4, 2020.
https://www.dictionary.com/browse/polymorph.

Douglass, Bruce Powel. 2016. Agile Systems Engineering. Waltham, MA, USA: Morgan
Kaufmann.

Dove, Rick, and Ralph LaBarge. 2014. "8.4.1 & 8.4.2 Fundamentals of agile systems
engineering - Parts 1 & 2." Proc. INCOSE Int. Symp. 24 (1): 859–896.

www.manaraa.com

118

Erickson, Martin J. 2011. Beautiful Mathematics. MAA Spectrim, Mathematical
Association of America. Accessed September 4, 2020.
https://en.wikipedia.org/wiki/Lemniscate.

Forsberg, Kevin, Hal Mooz, and Howard Cotterman. 2005. Visualizing Project
Management: Models and Frameworks for Mastering Complex Systems, 3rd
Edition. John Wiley & Sons.

Friedenthal, Sanford. 2017. "Architecting spacecraft with SysML FireSat-II model."
Accessed November 2018. http://sysml-models.com/spacecraft/models.html.

Friedenthal, Sanford, Alan Moore, and Rick Steiner. 2014. A Practical Guide to SysML.
Third Edition: The Systems Modeling Language. Boston, MA, USA: Morgan
Kaufmann.

Friedenthal, Sanford, and Christopher Oster. 2017. Architecting Spacecraft with SysML:
A Model- Based Systems Engineering Approach. San Bernardino, CA, USA:
CreateSpace Independent Publishing Platform.

Gans, Howard D. 2017. "Development of space vehicle CONOPS using SysML &
UPDM." Proc. AIAA Space Astronaut. Forum Expo. Orlando, FL, USA. 1–13.

General Electric Corporation. 2018. The Digital Twin: Compressing time-to-value for
digital industrial companies. Accessed October 2018.
https://www.ge.com/digital/sites/default/files/download_assets/The- Digital-
Twin_Compressing-Time-to-Value-for-Digital-Industrial- Companies.pdf.

Graves, Henson, and Yvonne Bijan. 2011. "Using formal methods with SysML in
aerospace design and engineering." Annals of Mathematics and Artificial
Intelligence 63 (1): 53–102.

Huang, Edward, Leon F. McGinnis, and Steven W. Mitchell. 2019. "Verifying SysML
activity diagrams using formal transformation to Petri nets." Systems Engineering
23 (1): 118–135.

INCOSE. 2015. Systems Engineering Handbook: A Guide for System Life Cycle
Processes and Activities, 4th ed. Hoboken, NJ, USA: Wiley.

INCOSE. 2014. Systems Engineering Vision 2025. San Diego, CA, USA: International
Council on Systems Engineering.

ISO. 2015. ISO/IEC/IEEE International Standard - Systems and Software Engineering –
System Life Cycle Processes. Standard, Geneva: ISO/IEC/IEEE Standard 15288.

www.manaraa.com

119

ISO. 2017. ISO/IEC/IEEE International Standard - Systems and Software Engineering—
Vocabulary. Standard, Geneva: ISO/IEC/IEEE Standard 24765: 2017(E).

Kargar, Mohammad Javad, and Alireza Hanifizade. 2018. "Automation of regression test
in microservice architecture." 2018 4th International Conference on Web
Research (ICWR). Tehran, Iran. 133-137.

Lewis, James. 2012. Micro services - Java, the Unix Way. March 19. Accessed
September 12, 2020. http://2012.33degree.org/talk/show/67.

Lewis, James, and Martin Fowler. 2014. Microservices. March 25. Accessed September
12, 2020. https://martinfowler.com/articles/microservices.html#footnote-
etymology.

Madni, Azad M., and Michael Sievers. 2018. "Model-based systems engineering:
Motivation, current status, and research opportunities." Systems Engineering 21
(3): 172–190.

Mathieson, John T.J., Thomas Mazzuchi, and Shahram Sarkani. 2020. "The Systems
Engineering DevOps Lemniscate and Model-Based System Operations." IEEE
Systems Journal 1-12.

NASA. 2017. NASA Systems Engineering Handbook, Revision 2. Washington, D.C.,
USA: National Aeronautics and Space Administration.

NDIA Systems Engineering Division M&S Committee. 2011. Final Report of the Model
Based Engineering Subcommittee. Final Report, Arlington, VA, USA: National
Defense Industrial Association (NDIA).

Null, Christopher. 2020. TechBeacon. Accessed September 12, 2020.
https://techbeacon.com/devops/10-companies-killing-it-devops.

Olszewska, Marta, and Marina Walden. 2015. "DevOps meets formal modelling in high-
criticality complex systems." Proc. 1st Int.Workshop Qual.-Aware DevOps. New
York, NY, USA.

Polya, George. 1945. How to Solve It. United States of America: Princeton University
Press.

Puchek, Beth, Michael Bisconti, Philomena Zimmerman, Jaime Guerrero, Pamela
Kobryn, Geethesh Kukkala, Clif Baldwin, Joe Hale, and Midh Mulpuri. 2017.
Digital Model-based Engineering: Expectations, Prerequisites, and Challenges of
Infusion. Washington DC, USA: Model-Based Engineering (MBE) Infusion Task

www.manaraa.com

120

Team, Office of the Undersecetary of Defense for Acquisition & Sustainment, US
Department of Defense.

Rabelo, Luis, and Tom Clark. 2015. "Modeling space operations systems using SysML as
to enable anomaly detection." SAE International Journal of Aerospace 8 (2): 189-
194.

Ramos, Ana Luisa, Jose Vasconcelos Ferreira, and Jaume Barcelo. 2012. "Model-based
systems engineering: An emerging approach for modern systems." IEEE
Transactions on Systems, Man, & Cybernetics, Part C 42 (1): 101–111.

Riungu-Kalliosaari, Leah, Simo Makinen, Lucy Ellen Lwakatare, Juha Tiihonen, and
Tomi Mannisto. 2016. "DevOps Adoption Benefits and Challenges in Practice: A
Case Study." 17th International Conference on Product-Focused Software
Process Improvement, PROFES. Trondheim, Norway: Springer. 590-597.

Ruan, Haowei, Craig Anslow, Stuart Marshall, and James Noble. 2010. "Exploring the
Inventor’s Paradox: Applying Jigsaw to Software Visualization." SOFTVIS'10 -
Proceedings of the 2010 International Symposium on Software Visualization, Co-
located with VisWeek 2010. Salt Lake City, UT, USA: Association for Computing
Machinery. 83-92.

SEBoK Editorial Board. 2020. The Guide to the Systems Engineering Body of Knowledge
(SEBoK), v. 2.2. Edited by R.J. Cloutier (Editor in Chief). The Trustees of the
Stevens Institute of Technology. Accessed May 20, 2020. www.sebokwiki.org.

Sheard, Sarah. 1996. "Twelve Systems Engineering Roles." Proceedings, Sixth Annual
International Symposium of the International Council on Systems Engineering.
Boston, MA: INCOSE.

Space Development Agency. 26 June 2020. Broad Agency Announcement - Mission
Specific Application Prototypes, HQ085020S0002. Washington, DC, USA: Space
Development Agency.

Sutharssan, Thamo, Stoyan Stoyanov, Chris Bailey, and Chunyan Yin. 2015. "Prognostic
and health management for engineering systems: A review of the data-driven
approach and algorithms." Journal of Engineering 7: 215–222.

Toure, El Hadji Bassirou, Ibrahima Fall, Alassane Bah, Mamadou Samba Camara, and
Mandicou Ba. 2017. "Consistency preserving for evolving megamodels through
axiomatic semantics." 2017 Intelligent Systems and Computer Vision (ISCV). Fez,
Morocco.

www.manaraa.com

121

Truszkowski, Walt, Lou Hallock, Christopher Rouff, Jay Karlin, James Rash, Michael G.
Hinchey, and Roy Sterritt. 2009. Autonomous and Autonomic Systems with
Applications to NASA Intelligent Spacecraft Operations and Exploration Systems.
New York, USA: Springer.

U.S. Department of Defense. 2018. 2018 Digital Engineering Strategy. Arlington, VA:
U.S. Department of Defense Office of the Deputy Assistant Secretary of Defense
for Systems.

Uhlemann, Thomas H.J., Christoph Schock, Christian Lehmann, Stefan Freiberger, and
Rolf Steinhilper. 2017. "The digital twin: Demonstrating the potential of real time
data acquisition in production systems." Procedia Manufacturing 9: 113–120.

Wagner, David A., Matthew B. Bennett, Robert Karban, Nicolas Rouquette, Steven
Jenkins, and Michel Ingham. 2012. "An ontology for state analysis: Formalizing
the mapping to SysML." Proc. IEEE Aerospace Conference. Big Sky, MT, USA.
1-6.

Wang, Renzhong, and Cihan H. Dagli. 2014. "Executable system architecting using
systems modeling language in conjunction with colored petri nets in a model-
driven systems development process." Syst. Eng. 14 (4): 383–409.

Wertz, James R., David F. Everett, and Jeffery J. Puschell. 2011. Space Mission
Engineering: The New SMAD. Hawthorne, CA, USA: Microcosm Press.

Zhu, Liming, Len Bass, and George Champlin-Scharff. 2016. "DevOps and its practices."
IEEE Software 33 (3): 32–34.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

